SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9MTM3 from www.uniprot.org...

The NucPred score for your sequence is 0.88 (see score help below)

   1  MDEGVNLVFHKKVIDGTAIKRLISRLIDHFGMAHTSHILDQVKTLGFQQA    50
51 TATSISLGIDDLLTIPSKGWLVQDAEQQSLSLEKHHHYGNVHAVEKLRQS 100
101 IEVWYATSEYLRQEMNPNFRMTDPFNPVHIMSFSGARGNASQVHQLVGMR 150
151 GLMSDPQGQMIDLPIQSNLREGLSLTEYIISCYGARKGVVDTAVRTSDAG 200
201 YLTRRLVEVVQHIVVRRTDCGTLRGISVSPRRMPERIFIQTLIGRVLADD 250
251 IYIGSRCIAIRNQDIGIGLVNRFITFRIQPISIRTPFTCRSTSWICRLCY 300
301 GRSPTHGDLVELGEAVGIIAGQSIGEPGTQLTLRTFHTGGVFTGGTAEHV 350
351 RAPSNGKIKFNFNEALVHPARTRHGHPALLCSMDLDVTIESEDILHNLTI 400
401 PPKSFLLVQNNQYVESEQVIAEICAGTSTFHFKERVRKHIYSDSEGEMHW 450
451 STDVYHAPEFTYSNVHLLPKTSHLWILSGGSCRSRGAPFSLHKDQDQMNP 500
501 RSTERERRYLSSLSANNDQIRYKFFSSSFSGKKKDDRSPGYSEMNRIICT 550
551 LHCNLIYPSILRENSDLLAKRRRNRLVIPVQSSQEREKELIPHSGISIEL 600
601 PINGIFRKKSILAFFDDPRYRTKSSGITQYETMGMHSIVKKEGLVDYRGI 650
651 NEFKPKYQMTIDRFFFIPEEVHILPESSSIMVRNNSLIGVDTRIALNTRS 700
701 RAGGLVRVERKKRGIALQIFSGTIHFPGETDKISWDSGILIPPGTGKRNS 750
751 KESKKWKNGIYVQRITPTKKKHFVLFRPVVTYEIADGLNLARLFPPDLCQ 800
801 EKDNMQLQIVNYIVYGNGKPIREISDTSIQLVRTWFILNWDQDKKSASAE 850
851 AAHASFVEVRAKGLIRDFLRIDLVKSPILDPRKRNDPSGSGLISDNVSDH 900
901 TNINPFYSKPKMKQSPRQNHGTIRTLLNQNKECPSLMILSASNCFRMGPF 950
951 NDVKSQNVIKESIKKDAIIQIRNSIGPLGTALQVVNFDSFYYFITHNQVL 1000
1001 LTKYLQVENLKQTFQVLQYYLMDESGRIYNPDPRSNIVLNSFNLSWYFLP 1050
1051 HNNYENSCEEISTIVSLGQFICENGCIAKNGPYLRSGQVLIVQLDSVVIR 1100
1101 SAKPYLATPGATVHGHYGEILYDGDTVVTFLYEKSRSGDITQGLPKVEQV 1150
1151 LEVRSVDSISVNLEKRVENWNEHITRILGFPWGFLIGAELTIVQSRISLV 1200
1201 NKIQKVYRSQGVQIHNRHIEIIVRQITSKVLVSEDGMSNVFLPRELIGLL 1250
1251 RAERTGRALEESICYKAFLLGITRTSLNTQSFISEASFQETARVLAKAAL 1300
1301 RGRIDWLKGLKENVVIGGMIPVGTGFKGLVHCSKQHKSIPKNKHFFEGEI 1350
1351 RDILFHHRELFDSCISKNFHDTPEQSFRVFNDS 1383

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.