SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9MZF4 from www.uniprot.org...

The NucPred score for your sequence is 0.65 (see score help below)

   1  MGFCLALTWTFLVGSWTSMGAQKPISWEVQRFDGWYNNLMEHKWGSKGSR    50
51 LQRLVPASYADGVYQPLGEPHLPNPRDLSNAAMRGPAGQASLRNRTVLGV 100
101 FFGYHVLSDLVSVETPGCPAEFLNIRIPPGDPVFDPNGRGDVVLPFQRSR 150
151 WDPESGQSPSNPRDLTNAVTGWLDGSAIYGSSHSWSDALRSFSGGQLASG 200
201 PDPAFPRNAQPPLLMWSAPDPASGQRGPGGLYAFGAERGNRDPFLQALGL 250
251 LWFRYHNLCAQRLARQHPHWGDEELFQHARKRVIATYQNIALYEWLPSFL 300
301 QQAPVKYAGYNPFLDPSISPEFLVASEQFFSTMVPPGIYMRNASCHFQEV 350
351 INRNSSISRALRVCNSYWSRKHPNLRRAEDVDALLLGMASQIAEREDHVV 400
401 VEDVLDFWPGSLKFSRTDHVAGCLQRGRDLGLPSYTKARAALGLPPITRW 450
451 QDINPALSQNNHTVLEATAALYNQDLSQLELLPGGLLESHGDPGPLFSAI 500
501 VLNQFVRLRDGDRYWFENTRNGLFSEEEIAEIRNTSLRDVLVAVTNMNPS 550
551 TLQPNVFFWHMGDPCPQPRQLSTQGLPACAPSTMQDYFEGSGFGFGVTIG 600
601 TLCCFPLVSLLSAWIVARLRKKNFKKLQGQDRKSVMSEKLVGGMEALEWQ 650
651 GHKEPCRPVLVHLQPGQICVVDGRLSVLRTIQLRPPQQVNLILSGNRGRR 700
701 ALLLKIPKEYDLVLLFNLEEERQVLVENLRGALKESGLKFQEWELREQEL 750
751 MRTAVTRQQRSHLLETFFRHLFSQVLDIDQADAGTLPLDSSQKVQEALTC 800
801 ELSRAEFAESLGLKPQDMFVESMFSLADKDGNGYLSFREFLDILVVFMKG 850
851 SPEEKSRLMFRMYDFDGNGLISKDEFIRMLRSFIEISNNCLSKAQLTEVV 900
901 ESMFRESGFQDKEELTWEDFHFMLRDHDSELRFTQLCVRGVEVPEVIKDL 950
951 CRRASYISQEKICPSPRVSARCPHSNTEVEWTPQRLQCPVDTDPPQEIRR 1000
1001 RFGKKVTSFQPLLFTEAQREKFQRSRRHQTLQQFKRFIENYRRHIGCVAV 1050
1051 FYAITGGLFLERAYYYAFGAHHMGITDTTRVGIILSRGTAASISFMFSYI 1100
1101 LLTMCRNLITFLRETFLNRYVPFDAAVDFHRLIASTAIVLTVLHSAGHVV 1150
1151 NVYLFSISPLSVLSCLFPGLFHNDGSEFPQKYYWWFFQTVPGLTGVMLLL 1200
1201 VLAIMYVFASHHFRRHSFRGFWLTHHLYILLYVLLIIHGSFGLIQLPRFH 1250
1251 IFFLVPALIYVGDKLVSLSRKKVEISVVKAELLPSGVTHLQFQRPQGFEY 1300
1301 KSGQWVQIACLALGTTEYHPFTLTSAPHEDTLSLHIRAAGPWTTRLREIY 1350
1351 SPPTGDGCAKYPKLYLDGPFGEGHQEWHKFEVSVLVGGGIGVTPFASILK 1400
1401 DLVFKSSVSCQVFCKKIYFIWVTRTQRQFEWLADIIREVEENDCQDLVSV 1450
1451 HIYITQLAEKFDLRTTMLYICERHFQKVLNRSLFTGLRSITHFGRPPFEP 1500
1501 FFKSLQEVHPQVRKIGVFSCGPPGMTKNVEKACQLINRQDRTHFSHHYEN 1550
1551 F 1551

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.