 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9NHE5 from www.uniprot.org...
The NucPred score for your sequence is 0.85 (see score help below)
1 MIDPSSSEEEGEDDAVPNVSSKGRLTNTTKGTSAVSIIGGSAGSVVGSNI 50
51 PVSGSNTDLIGNQRQSNISSICNRNDVGNISVAALGSTSNKIEQICGNRA 100
101 DTGNLEVPSNGIPSGISQETLNQSVGSSRANSLPRPLSPSPSLTSEKHET 150
151 AEPHGKHEREEEERKRRIQLYVFISRCISYPFNAKQPTDMTKRQTKISKQ 200
201 QLEIITQRFQAFLKGETQIMADEAFQNAVQSYHDVFLKSERVLKMVQSGA 250
251 SSQHDFREVFRNNIEKRVRSLPEIDGLSKETVLTSWMAKFDIILKGTGEE 300
301 DSKRPSRMQQSLNSELILSKEQLYDMFQQILLVKKFEHQILFNALMLDSA 350
351 DEQAAAIRRELDGRMQRVGEMEKNRKLMPKFVLKEMESLYVEELKSSINL 400
401 LMANLESLPVSKGNMDSKYGLQKLKRYNHSTPSFLKLILRSHGSLSKLEG 450
451 DSEDGSTQLTKLDVVLTFQLEVIVMEVENGEKLQTDQAEASKPMWDTQGD 500
501 FTTTHPLPVVKVKLYTENPGMLALEDKELGKVTLKPTPLSSKSPEWHRMI 550
551 VPKNLPDQDIRIKIACRLDKPLNMKHCGYLYAIGKSVWKKWKRRYFVLVQ 600
601 VSQYTFAMCSYKEKKSEPSEMMQLDGYTVDYIEAASANLMFGIDLNGGRY 650
651 FFNAVREGDSISFACDDENECSLWVMAMYRATGQSHKPTPPITQDKNSAM 700
701 SKIQGDADKARKHGMEDFISTDPCTFDHATLFKTLQNLTLEYRLNDPYAS 750
751 LGWFSPGQVFVLDEYCARYGVRGCYRHLCYLSDLLDRAEKQHMIDPTLIH 800
801 YSFAFCASHVHGNRPDGVGSITHEEKEKFSEIKERLRQLLEFQITNFRYC 850
851 FPFGRPEGALKATLSLLERVLMKDIVTPVPPEEVRQMIKKSLETAALVNY 900
901 TRLSNKAKIDEDLRGDVIVPAPKKLEDLIHLAELCVDLLQQNEEHYGEAF 950
951 AWFSDLLVEHAEIFWSLFAVDMDRVLSEQAPDTWDSFPLFQILNDYLRTD 1000
1001 DNLRNGRFHQHLRDTFAPLVVRYVDLMESSIAQSIHKGFEKERWESKGIN 1050
1051 AALNPAALNNAAQALNTAALNPSMILCGKKDQVNFYVPKLPKQSNSTAAN 1100
1101 DEMRNGCATSEDLFWKLDALQSFIRDLHWPDAEFRQHLEQRLKMMAVDMI 1150
1151 EQCIQRTDSSFQSWLKKNIAFISTDYILPSEMCAMVNVILDAKNQSFKLT 1200
1201 TIDGIDLYKFHAKIDDQIDKANVAMTQGLSGKLMSVLESTLSKLARYDEG 1250
1251 SLIGSILSFTNVSSSGKDLGQGYVNFFRNNMDQVRGKIADDLWTLHFFEQ 1300
1301 WYSQQINMLCNWLSERVDHALHYAQVASISHIIKKIYSDFELQGVLEDKL 1350
1351 NSKAYQAVAQRMATEEATCALTMPDACEDEPCDEIREGEEEDNGDESTSN 1400
1401 IPRGLPKPKVAAAQAAAVTNVVAGRVGNLLGKGIGGLSSKLGSGSWF 1447
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.