SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9NIW4 from www.uniprot.org...

The NucPred score for your sequence is 0.93 (see score help below)

   1  MSLRSNKLLVAAVIFTVVTFGLLLTSSIFNNKTTTSLTYGGILPKFGQRI    50
51 IEKKSNEEYIIEKIEHTQKDGEDVRSTRYLTHHSYLLRNLAKMEVKHHGK 100
101 DFSINDICYKPHNAIFETTFAPENIDKLPNYLQRLILEAQRLSPCLIVTP 150
151 LNCYHDSYRIHSEMSKWNTSNVTNFLNRKLRNSYIDAIGESEERPYIKST 200
201 YGPDLIKEWAHLMFKLPSKQTSSFSKKDLSSKIELWLSSIESKTNLTELG 250
251 RPSEVDNYFDICTSMQQVHDFDERKRKFGLYDDDDEFLIGLDCVENKTKF 300
301 IEWIQERELRGVSKPFNPNQQCDGIFKNSEGLEFFYGTRSFGNNTAPFDK 350
351 MKTEIGLMTPEQILTTMLHSDFVNGFESIWTIERAQELLDDFRLAIRQEV 400
401 KRFNENRSSLKIGIDTRVVQREESNETELEISSNLDSVVYFILFIRCVLL 450
451 IFFAFFAWSVNPLRSAVMFLVRDALTSLLFSILCKSDGQIELNSELLGYI 500
501 ILLTIVNTYLTTRVSWYKDRNETCIQRAKDFPSRSNFSLLFSIDSLRENC 550
551 DSRQLQYALAKLSKYLTALDTYSTETFMQLPNYWPFISILFVPITGCYWY 600
601 FVDINLPKISVVLLPSFIVATIEQRQVEKSLLKERKAKKEFQKVQKKKME 650
651 KFLSDGAVDRLLSGNSESVEDKKLYKSKDCVIHKESAGRLYELSRSSYDV 700
701 SKIMAYPNQRVRDFRFDALGCYFWLMKLKSAGILLYGSAVLFVLLSVAVM 750
751 LIPIQRTSLQKDMNNEVYFGFSINNMSSDWANINKNLHAFNSEIDSIQSL 800
801 QTISNWKKGFDRFEGRFYKNSSRISDANDYVEWMNQEPINWSVMAPLTRI 850
851 SPKFGIPSPFKFRFRYQIEVNNNESEVIDTVQRIDTLLTKYKGTLSSPIV 900
901 DGVLYEYYHGNAAVWNSFVFNELLASGILSAFFALIVVIFSITPSISSVL 950
951 IFSFFVIGSRLEIAAVISLFSLDNQQLYTDSAVLVGFLVAWAPFYELSLF 1000
1001 RRRLLYKLKTRCTPELSSGKRIRPPFTKAVDTAQVFAIVLAASLIIAVVA 1050
1051 GVVPEFQKFFWPTVILIVVQLVAFGNSIAVLVATNQMFEREVRNFLDNEF 1100
1101 ELGNGTTAGQVCHMAQKLIPPKYDIPIPMNDFHIRPTNMSKFYAPPPAKK 1150
1151 RAKQTNNETDPEKKEDEPGTSNANNVSQEEAAHRLAILPWHFVLGGIPVD 1200
1201 LTTRSDQIINGPFIGISSDAMRTHEINSELEDQDDYSSESSVEDVESDPA 1250
1251 PEEEIKYHEENMLHMIEKVQKDAAEKEAKEKVHQVESAQRRAPNFDDPNV 1300
1301 AGPSHRYQRNEERISTDIVPADPPREIPANPVPPPTHVLVQRAPRPHEMP 1350
1351 PVIDRTIPRDPRTEPPNLQECIQQNDDPSLPPHPRRHQYPDHYGRAMISY 1400
1401 CEDVYWTYNDGRLPPNVAMPPRPFDWHYRRVAPPEDFNYVPPPGQPSIPI 1450
1451 PAEAMALREERARAHREQEQRDNSQSPSPSPEPGL 1485

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.