 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9NXL9 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MNSDQVTLVGQVFESYVSEYHKNDILLILKERDEDAHYPVVVNAMTLFET 50
51 NMEIGEYFNMFPSEVLTIFDSALRRSALTILQSLSQPEAVSMKQNLHARI 100
101 SGLPVCPELVREHIPKTKDVGHFLSVTGTVIRTSLVKVLEFERDYMCNKC 150
151 KHVFVIKADFEQYYTFCRPSSCPSLESCDSSKFTCLSGLSSSPTRCRDYQ 200
201 EIKIQEQVQRLSVGSIPRSMKVILEDDLVDSCKSGDDLTIYGIVMQRWKP 250
251 FQQDVRCEVEIVLKANYIQVNNEQSSGIIMDEEVQKEFEDFWEYYKSDPF 300
301 AGRNVILASLCPQVFGMYLVKLAVAMVLAGGIQRTDATGTRVRGESHLLL 350
351 VGDPGTGKSQFLKYAAKITPRSVLTTGIGSTSAGLTVTAVKDSGEWNLEA 400
401 GALVLADAGLCCIDEFNSLKEHDRTSIHEAMEQQTISVAKAGLVCKLNTR 450
451 TTILAATNPKGQYDPQESVSVNIALGSPLLSRFDLILVLLDTKNEDWDRI 500
501 ISSFILENKGYPSKSEKLWSMEKMKTYFCLIRNLQPTLSDVGNQVLLRYY 550
551 QMQRQSDCRNAARTTIRLLESLIRLAEAHARLMFRDTVTLEDAITVVSVM 600
601 ESSMQGGALLGGVNALHTSFPENPGEQYQRQCELILEKLELQSLLSEELR 650
651 RLERLQNQSVHQSQPRVLEVETTPGSLRNGPGEESNFRTSSQQEINYSTH 700
701 IFSPGGSPEGSPVLDPPPHLEPNRSTSRKHSAQHKNNRDDSLDWFDFMAT 750
751 HQSEPKNTVVVSPHPKTSGENMASKISNSTSQGKEKSEPGQRSKVDIGLL 800
801 PSPGETGVPWRADNVESNKKKRLALDSEAAVSADKPDSVLTHHVPRNLQK 850
851 LCKERAQKLCRNSTRVPAQCTVPSHPQSTPVHSPDRMLDSPKRKRPKSLA 900
901 QVEEPAIENVKPPGSPVAKLAKFTFKQKSKLIHSFEDHSHVSPGATKIAV 950
951 HSPKISQRRTRRDAALPVKRPGKLTSTPGNQISSQPQGETKEVSQQPPEK 1000
1001 HGPREKVMCAPEKRIIQPELELGNETGCAHLTCEGDKKEEVSGSNKSGKV 1050
1051 HACTLARLANFCFTPPSESKSKSPPPERKNRGERGPSSPPTTTAPMRVSK 1100
1101 RKSFQLRGSTEKLIVSKESLFTLPELGDEAFDCDWDEEMRKKS 1143
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.