SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9NZ56 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MGNQDGKLKRSAGDALHEGGGGAEDALGPRDVEATKKGSGGKKALGKHGK    50
51 GGGGGGGGGESGKKKSKSDSRASVFSNLRIRKNLSKGKGAGGSREDVLDS 100
101 QALQTGELDSAHSLLTKTPDLSLSADEAGLSDTECADPFEVTGPGGPGPA 150
151 EARVGGRPIAEDVETAAGAQDGQRTSSGSDTDIYSFHSATEQEDLLSDIQ 200
201 QAIRLQQQQQQQLQLQLQQQQQQQQLQGAEEPAAPPTAVSPQPGAFLGLD 250
251 RFLLGPSGGAGEAPGSPDTEQALSALSDLPESLAAEPREPQQPPSPGGLP 300
301 VSEAPSLPAAQPAAKDSPSSTAFPFPEAGPGEEAAGAPVRGAGDTDEEGE 350
351 EDAFEDAPRGSPGEEWAPEVGEDAPQRLGEEPEEEAQGPDAPAAASLPGS 400
401 PAPSQRCFKPYPLITPCYIKTTTRQLSSPNHSPSQSPNQSPRIKRRPEPS 450
451 LSRGSRTALASVAAPAKKHRADGGLAAGLSRSADWTEELGARTPRVGGSA 500
501 HLLERGVASDSGGGVSPALAAKASGAPAAADGFQNVFTGRTLLEKLFSQQ 550
551 ENGPPEEAEKFCSRIIAMGLLLPFSDCFREPCNQNAQTNAASFDQDQLYT 600
601 WAAVSQPTHSLDYSEGQFPRRVPSMGPPSKPPDEEHRLEDAETESQSAVS 650
651 ETPQKRSDAVQKEVVDMKSEGQATVIQQLEQTIEDLRTKIAELERQYPAL 700
701 DTEVASGHQGLENGVTASGDVCLEALRLEEKEVRHHRILEAKSIQTSPTE 750
751 EGGVLTLPPVDGLPGRPPCPPGAESGPQTKFCSEISLIVSPRRISVQLDS 800
801 HQPTQSISQPPPPPSLLWSAGQGQPGSQPPHSISTEFQTSHEHSVSSAFK 850
851 NSCNIPSPPPLPCTESSSSMPGLGMVPPPPPPLPGMTVPTLPSTAIPQPP 900
901 PLQGTEMLPPPPPPLPGAGIPPPPPLPGAGILPLPPLPGAGIPPPPPLPG 950
951 AAIPPPPPLPGAGIPLPPPLPGAGIPPPPPLPGAGIPPPPPLPGAGIPPP 1000
1001 PPLPGAGIPPPPPLPGAGIPPPPPLPGAGIPPPPPLPGAGIPPPPPLPGA 1050
1051 GIPPPPPLPGAGIPPPPPLPGAGIPPPPPLPGAGIPPPPPLPGAGIPPPP 1100
1101 PLPGVGIPPPPPLPGAGIPPPPPLPGAGIPPPPPLPGAGIPPPPPLPRVG 1150
1151 IPPPPPLPGAGIPPPPPLPGAGIPPPPPLPGVGIPPPPPLPGVGIPPPPP 1200
1201 LPGAGIPPPPPLPGMGIPPAPAPPLPPPGTGIPPPPLLPVSGPPLLPQVG 1250
1251 SSTLPTPQVCGFLPPPLPSGLFGLGMNQDKGSRKQPIEPCRPMKPLYWTR 1300
1301 IQLHSKRDSSTSLIWEKIEEPSIDCHEFEELFSKTAVKERKKPISDTISK 1350
1351 TKAKQVVKLLSNKRSQAVGILMSSLHLDMKDIQHAVVNLDNSVVDLETLQ 1400
1401 ALYENRAQSDELEKIEKHGRSSKDKENAKSLDKPEQFLYELSLIPNFSER 1450
1451 VFCILFQSTFSESICSIRRKLELLQKLCETLKNGPGVMQVLGLVLAFGNY 1500
1501 MNGGNKTRGQADGFGLDILPKLKDVKSSDNSRSLLSYIVSYYLRNFDEDA 1550
1551 GKEQCLFPLPEPQDLFQASQMKFEDFQKDLRKLKKDLKACEVEAGKVYQV 1600
1601 SSKEHMQPFKENMEQFIIQAKIDQEAEENSLTETHKCFLETTAYFFMKPK 1650
1651 LGEKEVSPNAFFSIWHEFSSDFKDFWKKENKLLLQERVKEAEEVCRQKKG 1700
1701 KSLYKIKPRHDSGIKAKISMKT 1722

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.