SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9NZM4 from www.uniprot.org...

The NucPred score for your sequence is 0.82 (see score help below)

   1  MDDEDGRCLLDVICDPQALNDFLHGSEKLDSDDLLDNPGEAQSAFYEGPG    50
51 LHVQEASGNHLNPEPNQPAPSVDLDFLEDDILGSPATGGGGGGSGGADQP 100
101 CDILQQSLQEANITEQTLEAEAELDLGPFQLPTLQPADGGAGPTGAGGAA 150
151 AVAAGPQALFPGSTDLLGLQGPPTVLTHQALVPPQDVVNKALSVQPFLQP 200
201 VGLGNVTLQPIPGLQGLPNGSPGGATAATLGLAPIQVVGQPVMALNTPTS 250
251 QLLAKQVPVSGYLASAAGPSEPVTLASAGVSPQGAGLVIQKNLSAAVATT 300
301 LNGNSVFGGAGAASAPTGTPSGQPLAVAPGLGSSPLVPAPNVILHRTPTP 350
351 IQPKPAGVLPPKLYQLTPKPFAPAGATLTIQGEPGALPQQPKAPQNLTFM 400
401 AAGKAGQNVVLSGFPAPALQANVFKQPPATTTGAAPPQPPGALSKPMSVH 450
451 LLNQGSSIVIPAQHMLPGQNQFLLPGAPAVQLPQQLSALPANVGGQILAA 500
501 AAPHTGGQLIANPILTNQNLAGPLSLGPVLAPHSGAHSAHILSAAPIQVG 550
551 QPALFQMPVSLAAGSLPTQSQPAPAGPAATTVLQGVTLPPSAVAMLNTPD 600
601 GLVQPATPAAATGEAAPVLTVQPAPQAPPAVSTPLPLGLQQPQAQQPPQA 650
651 PTPQAAAPPQATTPQPSPGLASSPEKIVLGQPPSATPTAILTQDSLQMFL 700
701 PQERSQQPLSAEGPHLSVPASVIVSAPPPAQDPAPATPVAKGAGLGPQAP 750
751 DSQASPAPAPQIPAAAPLKGPGPSSSPSLPHQAPLGDSPHLPSPHPTRPP 800
801 SRPPSRPQSVSRPPSEPPLHPCPPPQAPPTLPGIFVIQNQLGVPPPASNP 850
851 APTAPGPPQPPLRPQSQPPEGPLPPAPHLPPSSTSSAVASSSETSSRLPA 900
901 PTPSDFQLQFPPSQGPHKSPTPPPTLHLVPEPAAPPPPPPRTFQMVTTPF 950
951 PALPQPKALLERFHQVPSGIILQNKAGGAPAAPQTSTSLGPLTSPAASVL 1000
1001 VSGQAPSGTPTAPSHAPAPAPMAATGLPPLLPAENKAFASNLPTLNVAKA 1050
1051 ASSGPGKPSGLQYESKLSGLKKPPTLQPSKEACFLEHLHKHQGSVLHPDY 1100
1101 KTAFPSFEDALHRLLPYHVYQGALPSPSDYHKVDEEFETVSTQLLKRTQA 1150
1151 MLNKYRLLLLEESRRVSPSAEMVMIDRMFIQEEKTTLALDKQLAKEKPDE 1200
1201 YVSSSRSLGLPIAASSEGHRLPGHGPLSSSAPGASTQPPPHLPTKLVIRH 1250
1251 GGAGGSPSVTWARASSSLSSSSSSSSAASSLDADEDGPMPSRNRPPIKTY 1300
1301 EARSRIGLKLKIKQEAGLSKVVHNTALDPVHQPPPPPATLKVAEPPPRPP 1350
1351 PPPPPTGQMNGTVDHPPPAAPERKPLGTAPHCPRLPLRKTYRENVGGPGA 1400
1401 PEGTPAGRARGGSPAPLPAKVDEATSGLIRELAAVEDELYQRMLKGPPPE 1450
1451 PAASAAQGTGDPDWEAPGLPPAKRRKSESPDVDQASFSSDSPQDDTLTEH 1500
1501 LQSAIDSILNLQQAPGRTPAPSYPHAASAGTPASPPPLHRPEAYPPSSHN 1550
1551 GGLGARTLTR 1560

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.