SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9P2D1 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MADPGMMSLFGEDGNIFSEGLEGLGECGYPENPVNPMGQQMPIDQGFASL    50
51 QPSLHHPSTNQNQTKLTHFDHYNQYEQQKMHLMDQPNRMMSNTPGNGLAS 100
101 PHSQYHTPPVPQVPHGGSGGGQMGVYPGMQNERHGQSFVDSSSMWGPRAV 150
151 QVPDQIRAPYQQQQPQPQPPQPAPSGPPAQGHPQHMQQMGSYMARGDFSM 200
201 QQHGQPQQRMSQFSQGQEGLNQGNPFIATSGPGHLSHVPQQSPSMAPSLR 250
251 HSVQQFHHHPSTALHGESVAHSPRFSPNPPQQGAVRPQTLNFSSRSQTVP 300
301 SPTINNSGQYSRYPYSNLNQGLVNNTGMNQNLGLTNNTPMNQSVPRYPNA 350
351 VGFPSNSGQGLMHQQPIHPSGSLNQMNTQTMHPSQPQGTYASPPPMSPMK 400
401 AMSNPAGTPPPQVRPGSAGIPMEVGSYPNMPHPQPSHQPPGAMGIGQRNM 450
451 GPRNMQQSRPFIGMSSAPRELTGHMRPNGCPGVGLGDPQAIQERLIPGQQ 500
501 HPGQQPSFQQLPTCPPLQPHPGLHHQSSPPHPHHQPWAQLHPSPQNTPQK 550
551 VPVHQHSPSEPFLEKPVPDMTQVSGPNAQLVKSDDYLPSIEQQPQQKKKK 600
601 KKNNHIVAEDPSKGFGKDDFPGGVDNQELNRNSLDGSQEEKKKKKRSKAK 650
651 KDPKEPKEPKEKKEPKEPKTPKAPKIPKEPKEKKAKTATPKPKSSKKSSN 700
701 KKPDSEASALKKKVNKGKTEGSENSDLDKTPPPSPPPEEDEDPGVQKRRS 750
751 SRQVKRKRYTEDLEFKISDEEADDADAAGRDSPSNTSQSEQQESVDAEGP 800
801 VVEKIMSSRSVKKQKESGEEVEIEEFYVKYKNFSYLHCQWASIEDLEKDK 850
851 RIQQKIKRFKAKQGQNKFLSEIEDELFNPDYVEVDRIMDFARSTDDRGEP 900
901 VTHYLVKWCSLPYEDSTWERRQDIDQAKIEEFEKLMSREPETERVERPPA 950
951 DDWKKSESSREYKNNNKLREYQLEGVNWLLFNWYNMRNCILADEMGLGKT 1000
1001 IQSITFLYEIYLKGIHGPFLVIAPLSTIPNWEREFRTWTELNVVVYHGSQ 1050
1051 ASRRTIQLYEMYFKDPQGRVIKGSYKFHAIITTFEMILTDCPELRNIPWR 1100
1101 CVVIDEAHRLKNRNCKLLEGLKMMDLEHKVLLTGTPLQNTVEELFSLLHF 1150
1151 LEPSRFPSETTFMQEFGDLKTEEQVQKLQAILKPMMLRRLKEDVEKNLAP 1200
1201 KEETIIEVELTNIQKKYYRAILEKNFTFLSKGGGQANVPNLLNTMMELRK 1250
1251 CCNHPYLINGAEEKILEEFKETHNAESPDFQLQAMIQAAGKLVLIDKLLP 1300
1301 KLKAGGHRVLIFSQMVRCLDILEDYLIQRRYPYERIDGRVRGNLRQAAID 1350
1351 RFSKPDSDRFVFLLCTRAGGLGINLTAADTCIIFDSDWNPQNDLQAQARC 1400
1401 HRIGQSKSVKIYRLITRNSYEREMFDKASLKLGLDKAVLQSMSGRENATN 1450
1451 GVQQLSKKEIEDLLRKGAYGALMDEEDEGSKFCEEDIDQILLRRTHTITI 1500
1501 ESEGKGSTFAKASFVASGNRTDISLDDPNFWQKWAKKAELDIDALNGRNN 1550
1551 LVIDTPRVRKQTRLYSAVKEDELMEFSDLESDSEEKPCAKPRRPQDKSQG 1600
1601 YARSECFRVEKNLLVYGWGRWTDILSHGRYKRQLTEQDVETICRTILVYC 1650
1651 LNHYKGDENIKSFIWDLITPTADGQTRALVNHSGLSAPVPRGRKGKKVKA 1700
1701 QSTQPVVQDADWLASCNPDALFQEDSYKKHLKHHCNKVLLRVRMLYYLRQ 1750
1751 EVIGDQADKILEGADSSEADVWIPEPFHAEVPADWWDKEADKSLLIGVFK 1800
1801 HGYEKYNSMRADPALCFLERVGMPDAKAIAAEQRGTDMLADGGDGGEFDR 1850
1851 EDEDPEYKPTRTPFKDEIDEFANSPSEDKEESMEIHATGKHSESNAELGQ 1900
1901 LYWPNTSTLTTRLRRLITAYQRSYKRQQMRQEALMKTDRRRRRPREEVRA 1950
1951 LEAEREAIISEKRQKWTRREEADFYRVVSTFGVIFDPVKQQFDWNQFRAF 2000
2001 ARLDKKSDESLEKYFSCFVAMCRRVCRMPVKPDDEPPDLSSIIEPITEER 2050
2051 ASRTLYRIELLRKIREQVLHHPQLGERLKLCQPSLDLPEWWECGRHDRDL 2100
2101 LVGAAKHGVSRTDYHILNDPELSFLDAHKNFAQNRGAGNTSSLNPLAVGF 2150
2151 VQTPPVISSAHIQDERVLEQAEGKVEEPENPAAKEKCEGKEEEEETDGSG 2200
2201 KESKQECEAEASSVKNELKGVEVGADTGSKSISEKGSEEDEEEKLEDDDK 2250
2251 SEESSQPEAGAVSRGKNFDEESNASMSTARDETRDGFYMEDGDPSVAQLL 2300
2301 HERTFAFSFWPKDRVMINRLDNICEAVLKGKWPVNRRQMFDFQGLIPGYT 2350
2351 PTTVDSPLQKRSFAELSMVGQASISGSEDITTSPQLSKEDALNLSVPRQR 2400
2401 RRRRRKIEIEAERAAKRRNLMEMVAQLRESQVVSENGQEKVVDLSKASRE 2450
2451 ATSSTSNFSSLSSKFILPNVSTPVSDAFKTQMELLQAGLSRTPTRHLLNG 2500
2501 SLVDGEPPMKRRRGRRKNVEGLDLLFMSHKRTSLSAEDAEVTKAFEEDIE 2550
2551 TPPTRNIPSPGQLDPDTRIPVINLEDGTRLVGEDAPKNKDLVEWLKLHPT 2600
2601 YTVDMPSYVPKNADVLFSSFQKPKQKRHRCRNPNKLDINTLTGEERVPVV 2650
2651 NKRNGKKMGGAMAPPMKDLPRWLEENPEFAVAPDWTDIVKQSGFVPESMF 2700
2701 DRLLTGPVVRGEGASRRGRRPKSEIARAAAAAAAVASTSGINPLLVNSLF 2750
2751 AGMDLTSLQNLQNLQSLQLAGLMGFPPGLATAATAGGDAKNPAAVLPLML 2800
2801 PGMAGLPNVFGLGGLLNNPLSAATGNTTTASSQGEPEDSTSKGEEKGNEN 2850
2851 EDENKDSEKSTDAVSAADSANGSVGAATAPAGLPSNPLAFNPFLLSTMAP 2900
2901 GLFYPSMFLPPGLGGLTLPGFPALAGLQNAVGSSEEKAADKAEGGPFKDG 2950
2951 ETLEGSDAEESLDKTAESSLLEDEIAQGEELDSLDGGDEIENNENDE 2997

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.