SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9P4Z1 from www.uniprot.org...

The NucPred score for your sequence is 0.97 (see score help below)

   1  MGKITKTMQQKHRDTLSPWLKEFVDTASSAPLPLILQRLDEFPRRWMFPR    50
51 GDLYHWIPLLNRFDNILESICATYELSKGPQTRDFGRDVLLNNGGPSLEY 100
101 RDEPWTVERLAEAGYKEDGDCQLLVAILKFTRMLLEHCGNRSIYASSHHI 150
151 DRLLNSPYLEVQAAALEVGLELAQRYNASVKRMPSPPRSVNPTLLANHYN 200
201 IDLEKVQLLARPFVRTPIVKSLEASSAAPAVSAGSTAKAKDKEKEKEKAT 250
251 GPKNVASMYANDLKALASSRPDEEDLWKSWGDLKMSYYPDTTNGEPSARD 300
301 SKDAQPVEPRTTSSPAAPTPLRRSSTMNVSQSSRTQRVGSSEEGSPLKPS 350
351 GAATDDRDGPKVVEIPRSVIESKRIYDLYDMCPSDMPATMKFEFTSRLRT 400
401 CKALLGTHRERQLALAVRLLAITNLAYILPEAVFVDKVLKYDKDEPRTFQ 450
451 LVYQLAELIAPSPDGNPSEVPKWLQSITLALLEAISHQQEKHSDVLAALN 500
501 VNVNHGILLYVIRIAVAEMKEDAPVDDQDELDADNWRGNLFGLTLQIAMA 550
551 TRIGQEMMTAGLMDCLVEILNLRTAVASRHYSMVLAFLDSLTYAYQTAFS 600
601 QLNSAGGLDAITNLIVHTVGESKTLTEAGLGTKPELHASLVDYSIPFYHQ 650
651 QTLKWLLKFIHHVMANTYSFDGTNTERLLRNLVDNSSLLGSLCTIARQNR 700
701 FFGTVVWSNATTLLSDFINNDPTSFAAISESGWIQAFLESVTNRPVSIPA 750
751 EQPSLEPSQSRANDGSEGNDADDDSEDDGSAHDAAPDSDGQAATQPHPPT 800
801 QEMLEAPRDFPPAHGILPSSESMNIIPTVLNSISLNNRGMKMVLSSGAIQ 850
851 SYMEIFESATHVQCMAHDPELASTIGSSLDELSRHHPALRPAIANAIIDM 900
901 IARVTHLVKTMDATKACGARLEAPESSASPVAEPAQATEVKGKGKEKATD 950
951 DTDVEMAEASSSSSGNNKPAQAPSIPYIQVLSTFLQPIISNSHLKGALIS 1000
1001 AGVIEILLDLAESPSLPHDFGETPACRMLVAAISQLIESAQIVGLPSLLF 1050
1051 RMENTVKVLQPRINPTTTEPFFAPFLTLNSSVSPVQDEEPASEKRTPDVS 1100
1101 SGTETVKALLNIQTMIKILYHCFPFSNRSQMVSMPAVNVYDYYIRLIQSL 1150
1151 GPLLRGVLKEEAAVNGAVPHHWTLKNKPYQTNSLGSRTDVQDLLTDSAAQ 1200
1201 DSSANGKKLTPEEQSTAEYKNFQTLRVLLHSFMPSIFPFFQTIGKALLPR 1250
1251 RNNNDPYIRSRHLAIAEASAETLIQQLQQSKAELTVRDIHNWIIMIHTFG 1300
1301 EMVVDTNHRTASGGAFLILPVITAFKELGGFEALNVMLKRLADMVSTGAT 1350
1351 EGQEATKAKLSMIGMKKVLDIYCFIISGKNLSDSMAQIALAPKPTERTTR 1400
1401 EFSHQLVVELRMSILPVVREIWASNIIEKSTGTVVSKIIDIIKTIAAGDL 1450
1451 ESNAQSRSDKESLPHLFKNRESVPFKWISRKDAETLATEQGVDVDLALEA 1500
1501 LYRANGKESDTKEYIKYQKAHLVRNRNPVPAEDAFKEVPSPNLSSSAGMS 1550
1551 LSNLLNTPTFPVSDLLGAEPMALDPVPNQPLGEASGETALGHATESSEDG 1600
1601 SDEGQPGTSRETNVGASTTAPQQLPVLPSQQPATESQSNTPRITREDLVE 1650
1651 ERAKLYDTLIDRSLEVISSHPEAVFEVADLIQNTILKTDNEDRRVEVGEI 1700
1701 LANALMSFASDDADELKENGSSIAAYAHLLALLLQQTAFMRTTVDMLRDY 1750
1751 VGDYLGFLKLPPASSNDSLPPWIPYILLIFEIMLFKDAQPPDIKWKQPVK 1800
1801 EDDPIEESVIEVKEPNFLAEHRSSLLTTLLDFLPRIGKEESLAVSVLRIL 1850
1851 VVLTRDHAVAKIVGEKKNLQRLFVMAKQLCGAGSTRLKQTHISEHIRQIL 1900
1901 RHIIEDEETLRQIFETDIRHLMTSRQRPSAAPGLEPQAYLRTQAHLALRS 1950
1951 PKTFVEVSTELLKLNRAVSHLGDGTLRSTPFLVLKERPADASVSPKESSV 2000
2001 EPAVQATEDLTISDVKPSTEVTDKDMHDAPKNPAQDLKRPILEHPDGVVH 2050
2051 FLLTELLNYKDVDERENVPAPPAAASKPESDATAANEATPSPSGDEQNSE 2100
2101 SKEKEKKLAKSPFKAEDHPIFIYRCFLLDCLAELLQSYNRAKVEFINFKR 2150
2151 SAPVQANAPVKPRSSVLNYILNDLLCFSPASGVPESIAMKKKAATAVPAR 2200
2201 AVLVALVSKTGEKPQNRTHEPFEYDDEPDLLFIRRFVLDTILRAYKDASV 2250
2251 SGEPADIRYGKMNALAELMAQMIGEGDKDSRPNNPRGTDPSIGRSQAQLK 2300
2301 RLMYEKGYLTSLTASIADIDLTFPHNRAPLKPILAVIKTLSKTAVSMSQL 2350
2351 GLIPASGTAGTDQAEDEFLSDGSSVSEDLTDDREETPDLYRNSTLGMLEP 2400
2401 GRDDEFSDEDEDDDEDMYDDEQYDDELDYGDDMSQDNEDNPSDEEDDLGE 2450
2451 MGEMGGMPGQPGVVEVLMGENDDEEDNDDMDDMDEDDEMDEDDEQELSDE 2500
2501 DEDEEVGSEDMDDLEDDIHIVDEEGNAIDDDGASWDDGTDEDEEDEEELD 2550
2551 YEAEAQNMQEAQLHNRRTFPEIMRAAMENAGDDLDAEPIRDFDGHYIDDD 2600
2601 EDGEEDDDEDEGEDDMDDDMYFDGDGLHDDLLAPNMPSGLGWDIAIEPNH 2650
2651 RHRPSRSPWPNSPFVVGRHRDAIDFQNFFRRPAHLSRHLPPPADVMSGTN 2700
2701 PLLLPQSRREVPRHAHSQLVRLGITPNMIGGLGMGMGVEPLAFISDLVQH 2750
2751 LPDVRLSAGGGPLALHFTADGPGGIIRELNAIPIPPPHSRESRPTEARRD 2800
2801 TYQEPHQAVQFSPESTHERWQQEVKMIFGFGYQDKAQKLAPLILSKLTPA 2850
2851 AIQAEKEEKARKAEADRKAEEERKKRQEEERKKREAKEAEEKAAREKKEA 2900
2901 EERERLERERAEAAAQAAAQAAADQEANAVSQEAHPMEGVETQGPGENAE 2950
2951 QQAEDERPRVYYTLRNQQIDITELGIDAEYLEALPEEFRDEVIAQAISTR 3000
3001 RSQAREQVSQEGENTEVFQEFLEALPEELRNEILHQEQHEQRRRERQNAA 3050
3051 GGQDLGPADMDPASILLTFPPGLRQQVLLDQGEDIMEHLGPELAAEARTL 3100
3101 VARHRQLHAQQGGQAASRSRDAQRPTEAGAGTVQKIQKRTVVQMLDKQGI 3150
3151 ATLLRLMFVSQQGSIRSSLFSIFANLCENRQNRLDVISSLLQILQDGCAN 3200
3201 MDAVERSFAQISHKAKQLKEKDAKTPHPLKRSLTGGTNNNGQFPASSEVS 3250
3251 PLLIVQQCLDLLVELSKLNPHIPSVFLTEHETVASTLKRSLSRKGKGKDV 3300
3301 NGKAQKFAINSLLTLLDRSLVMESSAVMQVLADLLNKVTIPLQAIERRRK 3350
3351 EAEEQAKKKKEAEEKAATEREAANAPEEQASTSTEQTPAQQEATQQPSES 3400
3401 TPAAASGQQPAQQDQENKELEAPKEKADEKDVQSDEKKIRQLTPPTIPEH 3450
3451 NLKLVINIFVARECSSKTFQNTISTIKNLSNIPGAKKVFGDELVRQARVL 3500
3501 SENILSDLDNLLPHILKAESGTQIQGVALAKFSPGASEQNKLLRVLTALD 3550
3551 HLFDSKSKKQDKPAEGENTKEDLLGSLYWNPTFGKMWDKLSACLSAIRQR 3600
3601 DNMLNVATILLPLIESLMVVCKNTTLSDASAVSNANSQKEMLLTSPPPED 3650
3651 RIAGLFFTFTEEHRRILNELVRHNPKLMSGTFSLLVKNPKVLEFDNKRNY 3700
3701 FNRSVHSKYQQTRHSFPPLQLQVRREHVFHDSFRSLYYKKADELKFGKLN 3750
3751 IRFQGEEGVDAGGVTREWFQVLSRQMFDPNYVLFVPVSSDRTTFHPNKLS 3800
3801 PINDEHLPFFKFIGRIIGKALYEGRLLECYFSRAVYKRILGKPVSVKDME 3850
3851 SFDPDYYKSLVWMLENDITDIITETFSVEDDVFGEVKVVDLIENGRNIPV 3900
3901 TEENKHEYVRLIVEHKLITSVKDQMKAFLTGFHEIIPEELIAIFNEQELE 3950
3951 LLISGLPDIDIDDWKANTEYHNYSAGAPQIQWFWRAVRSFDKEELAKLLQ 4000
4001 FVTGTSKVPLNGFKELEGMNGVSRFNIHRDYGSKDRLPSSHTCFNQLDLP 4050
4051 EYENYETLRSQLLKAITAGSDYFGFA 4076

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.