  |  Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. | 
NucPred
Fetching  Q9PU36  from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
   1  LDTTHHPRQPGKPPDPGPGLSKSRTVDVLKTEQRAPGRSPSSISLRESKS    50
  51  RTDFKEDQKPSMMPSFFSEANPLSAVTSVVNKFSPFDLISDSDAAHEEAG   100
 101  RKQKVTQKEQGKPEEQRGLAKHPSQQQSPKLVQQQGPVKPTPQQTESSKP   150
 151  VPQQQQPGEPKQGQKPGPSHPGDSKAEQVKQPPQPRGPQKSQLQQSEPTK   200
 201  PGQQQTSAKTSAGPTKPLPQQPDSAKTSSQAPPPTKPSLQQSGSVKQPSQ   250
 251  QPARQGGPVKPSAQQAGPPKQQPGSEKPTAQQTGPAKQPPQPGPGKTPLQ   300
 301  QTGPVKQVPPQAGPTKPSSQTAGAAKSLAQQPGLTKPPGQQPGPEKPLQQ   350
 351  KQASTTQPVESTPKKTFCPLCTTTELLLHTPEKANYNTCTQCHTVVCSLC   400
 401  GFNPNPHITEIKEWLCLNCQMQRALGGDLASGHGPGPQLPPPKQKTPTPA   450
 451  STAKPSPQLQPGQKKDASPKPDPSQQADSKKPVPQKKQPSMPGSPPVKSK   500
 501  QTHAEPSDTGQQIDSTPKSDQVKPTQAEEKQNQPSIQKPTMDTVPTSAAP   550
 551  GVKQDLADPQSPSTQQKVTDSPMPETTKPPADTHPAGDKPDSKPLPQVSR   600
 601  QKSDPKLASQSGAKSDAKTQKPSEPAPVKDDPKKLQTKPAPKPDTKPAPK   650
 651  GPQAGTGPRPTSAQPAPQPQQPQKTPEQSRRFSLNLGGITDAPKPQPTTP   700
 701  QETVTGKLFGFGASIFSQASSLISTAGQPGSQTSGPAPPATKQPQPPSQP   750
 751  PASQAPPKEAAQAQPPPKAAPTKKETKPLASEKLGPMASDSTLTTKGSDL   800
 801  EKKPSLAKDSKHQTAEAKKPAELSEQEKASQPKVSCPLCKTGLNIGSKDP   850
 851  PNFNTCTECKKVVCNLCGFNPMPHIVEVQEWLCLNCQTQRAMSGQLGDMG   900
 901  KVPLPKLGPSQPVSKPPATPQKQPVPAVSHSPQKSSTPPTPAATKPKEEP   950
 951  SVPKEVPKLQQGKLEKTLSADKIQQGIQKEDAKSKQGKLFKTPSADKIQR  1000
1001  VSQKEDSRLQQTKLTKTPSSDKILHGVQKEDIKFQEAKLAKIPSADKILH  1050
1051  RLQKEDPKLQQMKMAKALSADKIQPEAQKEDVQLQEVRLSKAVSADKIQH  1100
1101  GIQKDLNLQHVKIEKTSSVEKIQEAQKESKLQQDKLPKTLSEDKIPATVS  1150
1151  SDHKKLLSKSEEDKKPELLEKSTPHPKDKKEQITAETTGHITEQKVEVEA  1200
1201  PCDKLHEKKQEDVKKEDLTTGIPQMVSKPEKAEEEKTPVPVSRLPRSDHV  1250
1251  EAVREKIEKEDDKSDTSSSQQQKSPQGLSDTGYSSDGISSSLGEIPSHIP  1300
1301  SDEKDLPREPSQKDTISQESPPSPSDLAKLESTVLSILEAQASTLTDEKS  1350
1351  VKRKELYETYSEQTKDQHKTKPLPVTPESYSSDEEDLEAIQEGERTIAAD  1400
1401  SKGGASSQTDYKEEDGGNDTPARRQRYDSVEDSSESENSPVPRRKRRASV  1450
1451  GSSSSDEYKRDDSQGSGDEEDFIRKQIIEMSADEDASGSEDDEFIRNQLK  1500
1501  EISVTESQKKEEVKSKAKGTVGKHRRMARKSSAGYDEDAGRRHSWHDDDD  1550
1551  ETFDESPEPKYRETKSQDGEELAISGGGGLRRFKTIELNSTITSKYSETP  1600
1601  EQQKGILYFDEEPELEMESLTDSPEDRSRGEGSSSLHASSFTPGTSPTSV  1650
1651  SSLDEDSDSSPSHKKLGGESKQQRKARHRSHGPLLPTIEDSSEEEELREE  1700
1701  EELLKEQEKQRELEQQQRKSSSKKSKKDKDELRAQRRRERPKTPPSNLSP  1750
1751  IEDASPTEELRQAAEMEELHRSSCSEYSPSIESDPEGFEISPEKIIEVQK  1800
1801  VYKLPTAVSLYSPTDEKLIGALKEESGQKTLKSAEEVYEEMIHKTHKSKS  1850
1851  FQIASEKDEVFEKESLYGGMLIEDYIYESLIEDTYNGTVDTNLAMRQDES  1900
1901  NEYIQQRGKEKKIRASEQIYDEPQKITDLQEDYYSVEPLCSIVPQEDIVS  1950
1951  SSYIIPESHEIVVLDSTVTSTTEEKQLLDAEAAYEELMKKQRMQLTPGSS  2000
2001  PTQPTSDLAPTSDMKVSSIGEIADSTSLTSSTTSAISDVSSLSSIALSIP  2050
2051  DVKITQHFTAEEIEDEYLTDYAREIQEIISHETSMLTYSEVSEGAASILP  2100
2101  SDTASLTSSTSSVCTTDSSSPIDSATTGYVDTSDAVSKLVDSEDIIAQVP  2150
2151  FTSTEEYSEVSMPYESVAGATTKPAIASDMDTVHQAAVCLPETAPSVFTT  2200
2201  TVIKPKQYASDTITYDISTAEKDAARKMKSTVETGIIKIHHEDSHKELSL  2250
2251  DMTRINLTGATSEQPPLCVASVSVKEPASETPAVPTPRVVSKTSTVSMPS  2300
2301  SAPALTSKVFSLFRSSSLDSPAQPSPPSPPPPPPPPPPPLPPPILPKPAI  2350
2351  YPKKKSQIQAPMATAPTAVPLVTSVATLESAAVLKNHVVPVTKTYTPTPP  2400
2401  PVPPKPSSIPAGLVFSHRPTEVTKPPIAPKPAVPPLPIAVHKPAETQPKP  2450
2451  IGLSLTSSMTLNLVSSAEYKIASPTSPLSPHSNKSSPRLTKPSQETYVVI  2500
2501  TLPSEPGTPTEAITSQAVTSWPLEAPSKEQIPQPMQPIFTSSMKAVEIQS  2550
2551  MADQSMYITGALQTIPITTQSTFEKVPSSKSEAVTTEVAKTTASVVKRPV  2600
2601  PSVGLGSVTITIPPEPIYISDQPRYRENGRFHPLGDVIDLRTLTKVDIEM  2650
2651  RDSCMDLSAVSMDARRQMPTSDTSGRPVSTVQPAIINLSTACVADPSLSI  2700
2701  VTETVAVMTCTATVSYSASTDSLVDLGHAMTTPLQLTTSKHFEPAYRVTS  2750
2751  SQPFPVSRDEVPINLSLGTSAHAVTWAATKPVTVPPVSVTNGWTDLSTSQ  2800
2801  EPMEIGAVDLSTTKSHRTVVTMDETTSGIITTVIEDDEKPVDLTAGRRAV  2850
2851  CCDMVYKLPFGRSCTAQQPPTTLPEDRFGYRDDHYQYDRSGSYGYRGMGG  2900
2901  MKPSMSDTNLSEAGLFAYKSKNSFDYQVGATDAAVDLTSGRVTSGEVMDY  2950
2951  SSKTTGPYPETRQVISGIGISTPQYSQARMVSSLSSPFGAGSVLRSSNGV  3000
3001  VYSSVATPIPSTFAITTQPGSIFSTTVRDLPTLQTIDSVPSLSTLQQNQP  3050
3051  LPRSYSFLTTMAAEKDASTTLDIETGLPPLTLESIATEPTNLIPATASEV  3100
3101  YTDVIEDEVALIIAPEEGKQQQLDLERELLELEKIKQQRFAEELEWERQE  3150
3151  IQRFREQEKFMVQKKLEELQSMKHHLLFQQEEERQAQYMMRQETLAQQQL  3200
3201  QLEQFQQLQQQLHQQLEEQKIRQIYQYGYDPSGTGSPQTTTDQALLEGQY  3250
3251  ATAENGQFWPTDDATTTASGVLGIEISQSQTWYTVQSDGITQYIPRSGIL  3300
3301  SSVSEMSLKDIDVREEKQLKKRSSMPKLRGPYEELEESLEEEPRCYKKIV  3350
3351  DSGVQTDDEDGADRGYTNRRRRTKKSVDTSVQTDDEDQDEWDLSSRSGRK  3400
3401  PRVGKYSESTTEADKAKQFSKVSSIAVQTVAEISVQTEPVGTIRTPSIRA  3450
3451  RLDAKVEIIKHISAPEKTYKGESLGCQTETESDTQSPQYLSASSPQKDKK  3500
3501  RPTPLEIGYSSHLRPDSTLQVVPSPPKSPKVLYSPISPVSPSKVIESAFV  3550
3551  PYEKSITDDISPQKMLHPDIAKVPPSSPKAAKMMQRSMSDPKPLSPTAED  3600
3601  SSRAQFQYTEGFMTKGSSSITPSGTQKKVKRTLPNPPPEEATAGTQSPYT  3650
3651  SVGSVSRRRICRTTTMARAKILQDIDRELDLVERESAKLRKKQAELDEEE  3700
3701  KEIDAKLRYLEMGINRRKEALLKEREKRERAYLQGVAEERDYMSDSEVNN  3750
3751  TRSTRIETQHGLERPRTAPQTEFNQFMPPQTQPETQFAPATSPYGQYQYS  3800
3801  SPALPTQAPTQFTQQSHYQQQQPLYHQQVSPYQTQTAFQTGATMSFTPQA  3850
3851  QPPPTQQPSYQLSSQMMVIQPKPRQTPLYLEPKITTNYDVIRNQPLMIAP  3900
3901  VSTDNNYAVSQLGSKYTTLDLRIGLDERNSIASSPISSISADSFYADIDQ  3950
3951  HHTPRNYVLIDDIGELTKGTGALGSGFSLHEKDLTKTDRLLRTTEARRAQ  4000
4001  EVSDFLAPLQTSSRLHSYVKADEDPMEDPYELKLLKHQIKQEFRRGAESL  4050
4051  DHLAGLSQYYHPEGSFRHFPKSEKYSIGRLTLEKQAAKQLPAALLYQKQS  4100
4101  KHKKALIDPKLTKFSPIQESRDLEPDYSTYMTSSSTSSLGGITTRARLLQ  4150
4151  DDITFGLRKNITDQQKYMGAPLTSSIGAGLGAALGPTMRSTLQDEADKSY  4200
4201  SSGSRSRPSSRPSSVYGLDLSLKRDSSSSSLRLKAQEAEPLDVSFSHAAP  4250
4251  SGRTKPTSLPISQSRGRIPIVAQNSEEESPLSPVGQPMGMARAAAGPLPP  4300
4301  ISADTRDQFGSSHSLPEVQQHMREESRTRGYDRDIAFIMDDFQHAMSDSE  4350
4351  AYHLRREETDWFDKPRESRLENGHGLDRRLPEKLSHSRPPSQHQDQISCQ  4400
4401  INGKPLQYIFPHARLKLLRDPKDHTVSGNGLGIRVVGGKEIPGSSGEIGA  4450
4451  YIAKVLPGGNAEQTGKLIEGMQVLEWNGIPLTGKTYEEVQNIIIQQCGEA  4500
4501  EICVRLDLNMLSDSENPQHLELHEPVKAVDKAKSPGVDPKQLAAELQKVS  4550
4551  LQQAPLLASSGVEKSSHVHSGTTSATSSAVPSPGQPGSPSVSKKRHSSKP  4600
4601  AEATKSGSHPITGEIQLQINYDKHLGNLIIHILQARNLAPRDNNGYSDPF  4650
4651  VKVYLLPGRGQVMVVQNASAEYKRRTKYVQKSLNPEWNQTVIYKNISTEQ  4700
4701  LKKKTLEVTVWDYDRFSSNDFLGEVLIDLSSVSQLDNTPRWYPLKEQSEN  4750
4751  IDHGKSHSGQNSQQSPKPSVIKSRSHGIFPDPSKDMQVPTIEKSHSSPGS  4800
4801  SKSSSEGHLRSHGPSRSQSKTSVTQTHLEDAGAAIAAAEAAVQQLRLQPT  4850
4851  AHKSGQSNHARKQHRHSIAGVLPIQRTQSDNLPPPANDNKDQSQLALRKV  4900
4901  MSDGPVKPEGARSTNHRPAESSVSTGSSVSSFGSGYSMDSEGSSSATGEN  4950
4951  NLFPIPRIGKMSQNGQEPIKQSGVGLTDAEGKTQVMGEIKIALKKEMKTD  5000
5001  GEQLIVEILQCRNITYKFKSPDHLPDLYVKLYVVNVSTQKRVIKKKTRVC  5050
5051  RHDREPSFNETFRFSLSPAGHSLQILLVSNGGKFMKKTLIGEAYIWLDKV  5100
5101  DLRKRTVNWHKLLVSSTQTH                                5120
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold.  Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus.  Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them).  The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation).  Another benchmark is available in the Bioinformatics 2007 paper. | 
| NucPred score threshold |  Specificity |  Sensitivity | 
 | see above |  fraction of proteins predicted to be nuclear that actually are nuclear |  fraction of true nuclear proteins that are predicted (coverage) | 
 | 0.10 |  0.45 |  0.88 | 
 | 0.20 |  0.52 |  0.83 | 
 | 0.30 |  0.57 |  0.77 | 
 | 0.40 |  0.63 |  0.69 | 
 | 0.50 |  0.70 |  0.62 | 
 | 0.60 |  0.71 |  0.53 | 
 | 0.70 |  0.81 |  0.44 | 
 | 0.80 |  0.84 |  0.32 | 
 | 0.90 |  0.88 |  0.21 | 
 | 1.00 |  1.00 |  0.02 | 
| Sequences which score >= 0.8 with NucPred and which
                are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%.  (PredictNLS by itself is 87% correct with 26% coverage on the same data.) | 
Go back to the NucPred Home Page.