| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9QXL2 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MLGAADESSVRVAVRIRPQLAKEKIEGCHICTSVTPGEPQVFLGKDKAFT 50
51 FDYVFDIDSQQEQIYTQCIEKLIEGCFEGYNATVFAYGQTGAGKTYTMGT 100
101 GFDVNIMEEEQGIISRAVRHLFKSIDEKKTSAIKNGLPPPEFKVNAQFLE 150
151 LYNEEVLDLFDTTRDIDAKNKKSNIRIHEDSTGGIYTVGVTTRTVNTEPE 200
201 MMQCLKLGALSRTTASTQMNVQSSRSHAIFTIHVCQTRVCPQTDAENATD 250
251 NKLISESSPMNEFETLTAKFHFVDLAGSERLKRTGATGERAKEGISINCG 300
301 LLALGNVISALGDKSKRATHVPYRDSKLTRLLQDSLGGNSQTIMIACVSP 350
351 SDRDFMETLNTLKYANRARNIKNKVMVNQDRASQQINALRSEITRLQMEL 400
401 MEYKTGKRIIDEEGVESINDMFHENAMLQTENNNLRVRIKAMQETVDALR 450
451 ARITQLVSEQANQVLARAGEGNEEISNMIHSYIKEIEDLRAKLLESEAVN 500
501 ENLRKNLTRATARSPYFSASSAFSPTILSSDKETIEIIDLAKKDLEKLKR 550
551 KEKKKKKRLQKLEESGREERSVAGKDDNADTDQEKKEEKGVSEKENNELD 600
601 VEENQEVSDHEDEEEEEEDEEEEDDIEGEESSDESDSESDEKANYQADLA 650
651 NITCEIAIKQKLIDELENSQKRLQTLKKQYEEKLMMLQHKIRDTQLERDQ 700
701 VLQNLGSVESYSEEKAKKVKCEYEKKLHAMNKELQRLQTAQKEHARLLKN 750
751 QSQYEKQLKKLQQDVMEMKKTKVRLMKQMKEEQEKARLTESRRNREIAQL 800
801 KKDQRKRDHQLRLLEAQKRNQEVVLRRKTEEVTALRRQVRPMSDKVAGKV 850
851 TRKLSSSESPAPDTGSSAASGEADTSRPGTQQKMRIPVARVQALPTPTTN 900
901 GTRKKYQRKGFTGRVFTSKTARMKWQLLERRVTDIIMQKMTISNMEADMN 950
951 RLLRQREELTKRREKLSKRREKIVKESGEGDKSVANIIEEMESLTANIDY 1000
1001 INDSIADCQANIMQMEEAKEEGETLDVTAVINACTLTEARYLLDHFLSMG 1050
1051 INKGLQAAQKEAQIKVLEGRLKQTEITSATQNQLLFHMLKEKAELNPELD 1100
1101 ALLGHALQDLDGAPPENEEDSSEEDGPLHSPGSEGSTLSSDLMKLCGEVK 1150
1151 PKNKARRRTTTQMELLYADSSEVASDTSAGDASLSGPLAPVAEGQEIGMN 1200
1201 TETSGTSARDKELLAPSGLPSKIGSISRQSSLSEKKVPEPSPVTRRKAYE 1250
1251 KADKPKAKEHKHSDSGASETSLSPPSSPPSRPRNELNVFNRLTVPQGTPS 1300
1301 VQQDKSDESDSSLSEVHRGIINPFPACKGVRASPLQCVHIAEGHTKAVLC 1350
1351 VDSTDDLLFTGSKDRTCKVWNLVTGQEIMSLGVHPNNVVSVKYCNYTSLV 1400
1401 FTVSTSYIKVWDIRESAKCIRTLTSSGQVTLGEACSASTSRTVAIPSGES 1450
1451 QINQIALNPTGTFLYAASGNAVRMWDLKRFQSTGKLTGHLGPVMCLTVDQ 1500
1501 ISNGQDLIITGSKDHYIKMFDVTEGALGTVSPTHNFEPPHYDGIEALAIQ 1550
1551 GDNLFSGSRDNGIKKWDLAQKGLLQQVPNAHKDWVCALGLVPGHPVLLSG 1600
1601 CRGGILKLWNVDTFVPVGEMRGHDSPINAICVNSTHVFTAADDRTVRIWK 1650
1651 AHNLQDGQLSDTGDLGEDIASN 1672
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.