 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9QYR6 from www.uniprot.org...
The NucPred score for your sequence is 0.77 (see score help below)
1 MDGVAEFSEYVSETVDVPSPFDLLEPPTSGGFLKLSKPCCYIFPGGRGDS 50
51 ALFAVNGFNILVDGGSDRKSCFWKLVRHLDRIDSVLLTHIGADNLPGING 100
101 LLQRKVAELEEEQSQGSSSYSDWVKNLISPELGVVFFNVPDKLRLPDASR 150
151 KAKRSIEEACLTLQHLNRLGIQAEPLYRVVSNTIEPLTLFHKMGVGRLDM 200
201 YVLNPVKDSKEMQFLMQKWAGNSKAKTGIVLANGKEAEISVPYLTSITAL 250
251 VVWLPANPTEKIVRVLFPGNAPQNKILEGLEKLRHLDFLRYPVATQKDLA 300
301 AGAVPANLKPSKIKHRADSKESLKAAPKTAMSKLAKREEVLEEGAKEARS 350
351 ELAKELAKSEKKAKEPSEKPPEKPSKPERVRTESSEALKAEKRKLIKDKV 400
401 GKKHLKEKISKLEEKRDKEKKEIKKERKELKKEEGRKEEKKDAKKDEKRK 450
451 DTKPELKKFSKPDLKPFTPEVRKTLYKAKAPGRLKVDKGRAARGEKELSS 500
501 EPRTPPAQKGAAPPPAASGHRELALSSPEDLTQDFEELKREERGLLAEPR 550
551 DTELGEKPLPADASEQGRPSTAIQVTQPPASVLEQEQVEREKEVVPDFPE 600
601 DKGSKNRAPDSGAEVEREKETWEERKPREAELTPENIAAAREESEPEVKE 650
651 DVIEKAELEEMEEVHPSDEEEEETKAESFYQKHMQEALKVIPKGREALGG 700
701 RELGFQGKAPEKETASFLSSLATPAGAAEHVSYIQDETIPGYSETEQTIS 750
751 DEEIHDEPDERPAPPRFPTSTYDLSGPEGPGPFEASQSAESAVPASSSKT 800
801 YGAPETELTYPPNMVAAPLAEEEHVSSATSITECDKLSSFATSVAEDQSV 850
851 ASLTAPQTEETGKSSLLLDTVTSIPSSRTEATQGLDYVPSAGTISPTSSL 900
901 EEDKGFKSPPCEDFSVTGESEKKGESVGRGLTGEKAVGKEEKNVTTSEKL 950
951 SSQYAAVFGAPGHALHPGEPALGEVEERCLSPDDSTVKMASPPPSGPPSA 1000
1001 AHTPFHQSPVEEKSEPQDFQEDSWGDTKHAPGVSKEDAEEQTVKPGPEEA 1050
1051 MSEEGKVPLSRSPQAQDTLGSLAGGQTGCTIQLLPEQDKAVVFETGEAGA 1100
1101 ASGAGSLPGEVRTQEPAEPQKDELLGFTDQSFSPEDAESLSVLSVVSPDT 1150
1151 AKQEATPRSPCTPKEQQLHKDLWPMVSPEDTQSLSFSEESPSKETSLDIS 1200
1201 SKQLSPESLGTLQFGELSLGKEEKGPLVKAEDNSCHLAPVSIPEPHTATV 1250
1251 SPPTDEAAGEAGLTDESPAGNLPGSSFSHSALSGDRKHSPGEITGPGGHF 1300
1301 MTSDSSLTKSPESLSSPAMEDLAMEWGGKAPGSEDRATEQKEKELERKSE 1350
1351 TLQQKDQILSEKAALVQRDSVMHQKDEALDEENKPGGQQDKTSEQKGRDL 1400
1401 DKKDTAVELGKGPEPKGKDLYLEDQGLAEKDKALEQRGAALQQTQAPEPR 1450
1451 ARAQEHRDLEQKDEHLELRDKTPEEKDKVLVLEDRAPEHIIPQPTQTDRA 1500
1501 PEHRSKVDKEQKDEASEEKEQVLEQKDWAREKEGAALDQDNRAAGQKDGT 1550
1551 LKEDKTQGQKSSFLEDKSTTPKEMTLDQKSPEKAKGVEQQDGAVPEKTRA 1600
1601 LGLEESPEEEGKAREQEEKYWKEQDVVQGWRETSPTRGEPVPAWEGKSPE 1650
1651 QEVRYWRDRDITLQQDAYWKELSCERKVWFPHELDGQGARPRYSEEREST 1700
1701 FLDEGPNEQEITPLQHTPRSPWASDFKDFQEPLPQKGLEVERWLAESPVG 1750
1751 LPPEEEDKLTRSPFEIISPPASPPEMTGQRVPSAPGQESPVPDTKSTPPT 1800
1801 RNEPTTPSWLAEIPPWVPKDRPLPPAPLSPAPAPPTPAPDPHAPAPFSWG 1850
1851 IAEYDSVVAAVQEGAAELEGGPYSPLGKDYRKAEGEREGEGGAGAPDSSS 1900
1901 FSSKVPEVTESHTTRDAEQTEPEQREPTPYPDERSFQYADIYEQMMLTGL 1950
1951 GPACPTREPPLGASGDWPPHLSTKEEAAGRNKSAEKELSSAVSPPNLHSD 2000
2001 TPTFSYASLAGPTIPPRQEPEPGPNVEPSFTPPAVPPRAPISLSQDPSPP 2050
2051 LNGSTTSCGPDRRTPSPKEAGRSHWDDGTNDSDLEKGAREQPEKETQSPS 2100
2101 PHHPMPVGHPSLWPETEAHSSLSSDSHLGPVRPSLDFPASAFGFSSLQPA 2150
2151 PPQLPSPAEPRSAPCGSLAFSGDRALALVPGTPTRTRHDEYLEVTKAPSL 2200
2201 DSSLPQLPSPSSPGAPLLSNLPRPASPALSEGSSSEATTPVISSVAERFP 2250
2251 PGLEVAEQSSGELGPGNEPAAHSLWDLTPLSPAPLASRDLAPAPAPAPAP 2300
2301 SLPGNLGDGTLSCRPECSGELTKKPSPFLSHSGDHEANGPGETSLNPPGF 2350
2351 ATATAEKEEAEALHAWERGSWPEGAERSSRPDTLLSSEQRPGKSSGGPPC 2400
2401 SLSSEVEAGPQGCATDPRPHCGELSPSFLNPPLPPSTDDSDLSTEEARLA 2450
2451 GKGGRRRAGRPGATGGPCPMADETPPTSASDSGSSQSDSDVPPETEECPS 2500
2501 ITAEAALDSDEDGDFLPVDKAGGVSGTHHPRPGHDPPPAPLPDPRPPPPR 2550
2551 PDVCMADPEGLSSESGRVERLREKVQGRPGRKAPGRAKPASPARRLDIRG 2600
2601 KRSPTPGKGPVDRTSRALPRPRSTPSQVTSEEKDGHSPMSKGLVNGLKAG 2650
2651 STALGSKGSSGPPVYVDLAYIPNHCSGKTADQDFFRRVRASYYVVSGNDP 2700
2701 ANGEPSRAVLDALLEGKAQWGENLQVTLIPTHDTEVTREWYQQTHEQQQQ 2750
2751 LNVLVLASSSTVVMQDESFPACKIEF 2776
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.