 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9QZR8 from www.uniprot.org...
The NucPred score for your sequence is 0.87 (see score help below)
1 MPITQDNALLHLPLLYEWLQNSLREGGDSPEQRLCQAAIQKLQEYIQLNL 50
51 AVDESTVPPDHSPPEMEICTVYLTKQLGDTETVGLSFGNIPVFGDYGEKR 100
101 RGGKKRKTHQGPVLDVGCIWVTELRKNSPAGKSGKVRLRDEILSLNGQLM 150
151 VGVDVTGASYLAEQCWNGGFIYLIMLRRFKQKAHVTYNGNSGNSSEPGET 200
201 PTLELGDQTSKKGKRTRKFGVISRPSISKTPEDSKSSSGCDTADDPNSEL 250
251 ENGADPELGNGHAFELENGPHSLKDVAGPHLERSEADSEVELRVPKTEAP 300
301 LSDSNDKRRFSKTGKTDFQSSDCLAREEVGRIWKMELLKESDGLGIQVSG 350
351 GRGSKRSPHAIVVTQVKEGGAAHRDGRLSLGDELLVINGHLLVGLSHEEA 400
401 VAILRSATGMVQLVVASKMPGSEESQDVGSSEESKGNLESPKQGNCKTKL 450
451 KSRLSGGVHRLESVEEYNELMVRNGDPRIRMLEVSRDGRKHSLPQLLDST 500
501 GTSQEYHIVKKSTRSLSTTHVESPWRLIRPSVISIIGLYKEKGKGLGFSI 550
551 AGGRDCIRGQMGIFVKTIFPNGSAAEDGRLKEGDEILDVNGIPIKGLTFQ 600
601 EAIHTFKQIRSGLFVLTVRTKLLSPSLTPCSTPTHMSRSSSPSFNTNSGG 650
651 TPAGGGQEEGGSSSLGRKAPGPKDRIVMEVTLNKEPRVGLGIGACCLALE 700
701 NSPPGIYIHSLAPGSVAKMESNLSRGDQILEVNSVNVRHAALSKVHAILS 750
751 KCPPGPVRLVIGRHPNPKVSEQEMDEVIARSTYQESREANSSPGLGTPLK 800
801 SPSLAKKDSLLSESELSQYFVHDGQGSLSDFVVAGSEDEDHPGSGYETSE 850
851 DGSLLPVPSAHKARANSLVTLGSQRTSGLLHKQVTVARQASLPGSPQVLR 900
901 NPLLRQRRVRCYDSNGGSDDEDFDGEGDCISLPGVLPGPGKPLVEDDTRP 950
951 ALTTSSKSIDVNKQEERLQKPLVSKACSVPLLGSSLDSEHSILNGAGGTP 1000
1001 PKVASLPGSGETPKNGPRGSGRKEMSGSRSSPKLEYRVPTDTQSPRSPEN 1050
1051 HTSPPQKSENLVSRHKPVARISPHYKRSDAEEAPGGTANGPCAQDLKVQA 1100
1101 SPVKDPVTSRQPGGTAEKELRGNPTPGDSSVPTNCGPASTPCHPNIGLPT 1150
1151 ENPQGAAPECGPHPGTGWDGSSEHLCSPGKSREVHPDSSETPTVAEQVHQ 1200
1201 PESLSQPVSPRTSEPESQGISKMKPPSQRCVSPREKASTPPDSSRAWAAP 1250
1251 GDSSPSTRRIAVPMSTGAAPATAIPQASLVSQERSRGLSGPSKGLGTKEL 1300
1301 CIPKSLKDGALLEDTAPASGKMSHASSPSGPVATERTLSGSPENPVTDID 1350
1351 NFIEEASEARLSQSPQKADCRAHGDTFESQPPGGAGSSSSHHAQMVRSDQ 1400
1401 TSSPRKTGGTGSPPPQQWALQPSVLDSIHPDKHLAVNKTFLNNYSRNFSN 1450
1451 FHEDSISLSGPGGSSEPSPSSMYGNAEDSSSDPESLAEDPGAAARNNWSP 1500
1501 PLSPESSPKEGSSESEDERIEICSTDGCPGTPVTAPPPTQVALCPVLPVQ 1550
1551 QRAVCKPVGDICERACFVPGASRTSIPDSSQPFSFLDVSSEEPETWASIN 1600
1601 ASQNHMPVCTEGIMDVTSTSSNMGDSQSSQMTRHCRNAPFVLGNPDMVND 1650
1651 LGRDLLDEGAPKEGAAAASVMRSVFALGAEGPKNGEAVLADLHIAERGNL 1700
1701 EDLLQKPKTISRRPILTWFKEINKDSQGSHLRSTSEKEQSSMLALGPGSK 1750
1751 ANMVNTGHRKGVTVPKSPPSRQKSQENKDLPPKSPVETLGNCQKPKCSPK 1800
1801 LKRLNSKGKASPEVPVAISTKGSRNDHRKTLPSPQASHKMFSKAVSHRLH 1850
1851 IADQEEPKNTAGDTPKPPQCVPESKPPQAALGSLRTSASDTSIRTFTSPL 1900
1901 TSPKLLPEQGANSRFHMAVYLESDTSCPTTSRSPRSGPEGKAPHANSGSA 1950
1951 SPPASRASLALAGIRQSKQFTPGRADLLVSEATQPQGICEKGAEKKVSDP 2000
2001 PQRTNQLKIVEISSERVPKNACGDRPPESDRKGGFLTQNNCQEKSAIRLR 2050
2051 QSEESSPEHTPFPPSQASQVEREIRWSFSMAKPATSSSSSLQLPAKLPES 2100
2101 FQGKSSQMPASVGVPKNGVPIGLAGEESPYFTPRPATRTYSMPAQFSSHF 2150
2151 GREGPSPHSPSHSPQDPQVPAMGGKLSEKTAKGVTNGQGVYSVKPLLETS 2200
2201 KNLSPVDGRDVSADPETSCLIPDKVKVTRRQYCCEQSWPHESTSFFSVKQ 2250
2251 RIKSFENLANSDRPTAKCATSPFLSVSSKPPINRRSSGSIPSGSPSDMTS 2300
2301 RSLRRSLSSCSESQSEASSLLPQMTKSPSSMTLTVSRQNPPDTSNKGPSP 2350
2351 DPKKSLVPVGIPTSTVSPASPSKRNKSSVRHAQPSPVSRSKLQERRTLSM 2400
2401 PDLDKLCNGEDDSASPGAVLFKTQLEITPRRSKGSQATSPAGSPARGHAD 2450
2451 FNGSTFLSCPMNGGTRAYTKGNSPPASEPAIATGSREEGESVWATPSGKS 2500
2501 WSVSLDRLLASVGNQQRLQGILSLVGSKSPILTLIQEAKAQSETKEDICF 2550
2551 IVLNKKEGSGLGFSVAGGADVEPKSVMVHRVFSQGVASQEGTVSRGDFLL 2600
2601 SVNGTSLAGLAHSEVTKVLHQAELHKHALMIIKKGNDQPGPSFKQEPPSA 2650
2651 NGKGPFPRRTLPLEPGAGRNGAAHDALCVEVLKTSAGLGLSLDGGKSSVS 2700
2701 GEGPLVIKRVYKGGAAERAGTIEAGDEILAINGKPLVGLVHFDAWNIMKS 2750
2751 VPEGPVQLVIRKHRDS 2766
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.