 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9R0M0 from www.uniprot.org...
The NucPred score for your sequence is 0.66 (see score help below)
1 MRSRAASAPLPTPLLPLLLLLLLLPPSPLLGDQVGPCRSLGSGGRSSSGA 50
51 CAPVGWLCPASASNLWLYTSRCRESGIELTGHLVPHHDGLRVWCPESGAH 100
101 IPLPPSSEGCPWSCRLLGIGGHLSPQGTLTLPEEHPCLKAPRLRCQSCKL 150
151 AQAPGLRAGEGSPEESLGGRRKRNVNTAPQFQPPSYQATVPENQPAGTSV 200
201 ASLRAIDPDEGEAGRLEYTMDALFDSRSNHFFSLDPITGVVTTAEELDRE 250
251 TKSTHVFRVTAQDHGMPRRSALATLTILVTDTNDHDPVFEQQEYKESLRE 300
301 NLEVGYEVLTVRATDGDAPPNANILYRLLEGAGGSPSDAFEIDPRSGVIR 350
351 TRGPVDREEVESYKLTVEASDQGRDPGPRSSTAIVFLSVEDDNDNAPQFS 400
401 EKRYVVQVREDVTPGAPVLRVTASDRDKGSNALVHYSIMSGNARGQFYLD 450
451 AQTGALDVVSPLDYETTKEYTLRIRAQDGGRPPLSNVSGLVTVQVLDIND 500
501 NAPIFVSTPFQATVLESVPLGYLVLHVQAIDADAGDNARLEYSLAGVGHD 550
551 FPFTINNGTGWISVAAELDREEVDFYSFGVEARDHGTPALTASASVSVTI 600
601 LDVNDNNPTFTQPEYTVRLNEDAAVGTSVVTVSAVDRDAHSVITYQITSG 650
651 NTRNRFSITSQSGGGLVSLALPLDYKLERQYVLAVTASDGTRQDTAQIVV 700
701 NVTDANTHRPVFQSSHYTVNVNEDRPAGTTVVLISATDEDTGENARITYF 750
751 MEDSIPQFRIDADTGAVTTQAELDYEDQVSYTLAITARDNGIPQKSDTTY 800
801 LEILVNDVNDNAPQFLRDSYQGSVYEDVPPFTSVLQISATDRDSGLNGRV 850
851 FYTFQGGDDGDGDFIVESTSGIVRTLRRLDRENVAQYVLRAYAVDKGMPP 900
901 ARTPMEVTVTVLDVNDNPPVFEQDEFDVFVEENSPIGLAVARVTATDPDE 950
951 GTNAQIMYQIVEGNIPEVFQLDIFSGELTALVDLDYEDRPEYVLVIQATS 1000
1001 APLVSRATVHVRLLDRNDNPPVLGNFEILFNNYVTNRSSSFPGGAIGRVP 1050
1051 AHDPDISDSLTYSFERGNELSLVLLNASTGELRLSRALDNNRPLEAIMSV 1100
1101 LVSDGVHSVTAQCSLRVTIITDEMLTHSITLRLEDMSPERFLSPLLGLFI 1150
1151 QAVAATLATPPDHVVVFNVQRDTDAPGGHILNVSLSVGQPPGPGGGPPFL 1200
1201 PSEDLQERLYLNRSLLTAISAQRVLPFDDNICLREPCENYMRCVSVLRFD 1250
1251 SSAPFIASSSVLFRPIHPVGGLRCRCPPGFTGDYCETEVDLCYSRPCGPH 1300
1301 GRCRSREGGYTCLCLDGYTGEHCEASTHSGRCTPGVCKNGGTCVNLLVGG 1350
1351 FKCDCPSGDFEKPFCQVTTRSFPARSFITFRGLRQRFHFTLALSFATKER 1400
1401 NGLLLYNGRFNEKHDFVALEVIQEQVQLTFSAGESTTTVSPFVPGGVSDG 1450
1451 QWHTVQLKYYNKPLLGQTGLPQGPSEQKVAVVSVDGCDTGVALRFGAMLG 1500
1501 NYSCAAQGTQGGSKKSLDLTGPLLLGGVPDLPESFPVRMRHFVGCMKDLQ 1550
1551 VDSRHIDMADFIANNGTVPGCPTKKIVCDSSICHNGGTCVNQWNAFSCEC 1600
1601 PLGFGGKSCAQEMANPQRFLGSSLVAWHGLSLPISQPWHLSLMFRTRQAD 1650
1651 GVLLQAVTRGRSTITLQLRAGHVVLSVEGTGLQASSLRLEPGRANDGDWH 1700
1701 HAQLALGASGGPGHAILSFDYGQQKAEGNLGPRLHGLHLSNITVGGVPGP 1750
1751 ASGVARGFRGCLQGVRVSETPEGISSLDPSRGESINVEPGCSWPDPCDSN 1800
1801 PCPTNSYCSNDWDSYSCSCVLGYYGDNCTNVCDLNPCEHQSVCTRKPNTP 1850
1851 HGYICECLPNYLGPYCETRIDQPCPRGWWGHPTCGPCNCDVSKGFDPDCN 1900
1901 KTSGECHCKENHYRPPGSPTCLLCDCYPTGSLSRVCDPEDGQCPCKPGVI 1950
1951 GRQCDRCDNPFAEVTTNGCEVNYDSCPRAIEAGIWWPRTRFGLPAAAPCP 2000
2001 KGSFGTAVRHCDEHRGWLPPNLFNCTSVTFSELKGFAERLQRNESGLDSG 2050
2051 RSQRLALLLRNATQHTSGYFGSDVKVAYQLATRLLAHESAQRGFGLSATQ 2100
2101 DVHFTENLLRVGSALLDAANKRHWELIQQTEGGTAWLLQHYEAYASALAQ 2150
2151 NMRHTYLSPFTIVTPNIVISVVRLDKGNFAGTKLPRYEALRGERPPDLET 2200
2201 TVILPESVFREMPSMVRSAGPGEAQETEELARRQRRHPELSQGEAVASVI 2250
2251 IYHTLAGLLPHNYDPDKRSLRVPKRPVINTPVVSISVHDDEELLPRALDK 2300
2301 PVTVQFRLLETEERTKPICVFWNHSILVSGTGGWSARGCEVVFRNESHVS 2350
2351 CQCNHMTSFAVLMDMSRRENGEILPLKTLTYVALGVTLAALMLTFLFLTL 2400
2401 LRALRSNQHGIRRNLTAALGLAQLVFLLGINQADLPFACTVIAILLHFLY 2450
2451 LCTFSWALLEALHLYRALTEVRDVNASPMRFYYMLGWGVPAFITGLAVGL 2500
2501 DPEGYGNPDFCWLSVYDTLIWSFAGPVAFAVSMSVFLYILSARASCAAQR 2550
2551 QGFEKKGPVSGLRSSFTVLLLLSATWLLALLSVNSDTLLFHYLFAACNCV 2600
2601 QGPFIFLSYVVLSKEVRKALKFACSRKPSPDPALTTKSTLTSSYNCPSPY 2650
2651 ADGRLYQPYGDSAGSLHSASRSGKSQPSYIPFLLREESTLNPGQVPPGLG 2700
2701 DPSGLFLEGQAQQHDPDTDSDSDLSLEDDQSGSYASTHSSDSEEEEEEAA 2750
2751 FPGEQGWDSLLGPGAERLPLHSTPKDGGPGSGKVPWLGDFGTTTKENSGS 2800
2801 GPLEERPRENGDALTREGSLGPLPGPSTQPHKGILKKKCLPTISEKSSLL 2850
2851 RLPLEQGTGSSRGSSISEGSRHGPPPRPPPRQSLQEQLNGVMPVAMSIKA 2900
2901 GTVDEDSSGSEFLFFNFLH 2919
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.