SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9S775 from www.uniprot.org...

The NucPred score for your sequence is 0.89 (see score help below)

   1  MSSLVERLRIRSDRKPVYNLDDSDDDDFVPKKDRTFEQVEAIVRTDAKEN    50
51 ACQACGESTNLVSCNTCTYAFHAKCLVPPLKDASVENWRCPECVSPLNEI 100
101 DKILDCEMRPTKSSEQGSSDAEPKPIFVKQYLVKWKGLSYLHCSWVPEKE 150
151 FQKAYKSNHRLKTRVNNFHRQMESFNNSEDDFVAIRPEWTTVDRILACRE 200
201 EDGELEYLVKYKELSYDECYWESESDISTFQNEIQRFKDVNSRTRRSKDV 250
251 DHKRNPRDFQQFDHTPEFLKGLLHPYQLEGLNFLRFSWSKQTHVILADEM 300
301 GLGKTIQSIALLASLFEENLIPHLVIAPLSTLRNWEREFATWAPQMNVVM 350
351 YFGTAQARAVIREHEFYLSKDQKKIKKKKSGQISSESKQKRIKFDVLLTS 400
401 YEMINLDSAVLKPIKWECMIVDEGHRLKNKDSKLFSSLTQYSSNHRILLT 450
451 GTPLQNNLDELFMLMHFLDAGKFGSLEEFQEEFKDINQEEQISRLHKMLA 500
501 PHLLRRVKKDVMKDMPPKKELILRVDLSSLQKEYYKAIFTRNYQVLTKKG 550
551 GAQISLNNIMMELRKVCCHPYMLEGVEPVIHDANEAFKQLLESCGKLQLL 600
601 DKMMVKLKEQGHRVLIYTQFQHMLDLLEDYCTHKKWQYERIDGKVGGAER 650
651 QIRIDRFNAKNSNKFCFLLSTRAGGLGINLATADTVIIYDSDWNPHADLQ 700
701 AMARAHRLGQTNKVMIYRLINRGTIEERMMQLTKKKMVLEHLVVGKLKTQ 750
751 NINQEELDDIIRYGSKELFASEDDEAGKSGKIHYDDAAIDKLLDRDLVEA 800
801 EEVSVDDEEENGFLKAFKVANFEYIDENEAAALEAQRVAAESKSSAGNSD 850
851 RASYWEELLKDKFELHQAEELNALGKRKRSRKQLVSIEEDDLAGLEDVSS 900
901 DGDESYEAESTDGEAAGQGVQTGRRPYRRKGRDNLEPTPLMEGEGRSFRV 950
951 LGFNQSQRAIFVQTLMRYGAGNFDWKEFVPRLKQKTFEEINEYGILFLKH 1000
1001 IAEEIDENSPTFSDGVPKEGLRIEDVLVRIALLILVQEKVKFVEDHPGKP 1050
1051 VFPSRILERFPGLRSGKIWKEEHDKIMIRAVLKHGYGRWQAIVDDKELGI 1100
1101 QELICKELNFPHISLSAAEQAGLQGQNGSGGSNPGAQTNQNPGSVITGNN 1150
1151 NASADGAQVNSMFYYRDMQRRLVEFVKKRVLLLEKAMNYEYAEEYYGLGG 1200
1201 SSSIPTEEPEAEPKIADTVGVSFIEVDDEMLDGLPKTDPITSEEIMGAAV 1250
1251 DNNQARVEIAQHYNQMCKLLDENARESVQAYVNNQPPSTKVNESFRALKS 1300
1301 INGNINTILSITSDQSKSHEDDTKPDLNNVEMKDTAEETKPLRGGVVDLN 1350
1351 VVEGEENIAEASGSVDVKMEEAKEEEKPKNMVVD 1384

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.