| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9TTK4 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MSTDSNSLAREFLTDVNRLCNAVVQRVEAREEEEEETHMATLGQYLVHGR 50
51 GFLLLTKLNSIIDQALTCREELLTLLLSLLPLVWKIPVQEEKATDFNLPF 100
101 SAGIILTKEKNSSSQRSTQEKLYLEGSAPAGQVSAKVNVFRKSRRQRKTT 150
151 HRYSVRDARKTQLSTSDSEVNSDDKSIVMTKYRRSHVLQHFVKQCPKEDH 200
201 LTAKLNHLSTKEQTPPDTMALENSREIIPREESNTDILSEPAALSTISHM 250
251 NNSPFDLCHVLLSLLEKVCKFDITLNHNSALAASVVPTLTEFLAGFGDCC 300
301 NLSDNLEGQMVSAGWTEEPVALIQRMLFRTVLHLMSVDISMAEVMPENLR 350
351 KNLTELLRAALKIRTFLEKQPDPFAPRQKKTLQEVQDDFVFSKYCHRVLL 400
401 LPELLEGVLQILICCLQSAASNPFFFSQAMDLVQEFIQHHGFHLFETAVL 450
451 QMEWLVVRDGVPPEASGHLKALINNVMKIMSTVKKVKSEQLHHSMCTRKR 500
501 HRRCEYSHFMHHHRDLSGLLVSAFKNQVSKNPFEETADGDVYYPERCCCI 550
551 AVCAHQCLRLLQQASLSSTCVQILSGVQNIGICCCMDPKSVIVPLLHAFK 600
601 LPALKSCQQHILNILNKLILDQLGGAEIPQKTKKAACNICTVDSDQLAKL 650
651 EETLQGSSYNAEPSSGLSSPSYRFQGILPSSGSEDLLWKWDALEAYQNFV 700
701 FEEDRLQSVQIANHICSLIQKGNVVVQWKLYNCIFNPVLQRGVELAHHCQ 750
751 QLSISSAQTHVCSHHNQCLPQEVLQIYLKTLPTLLKSRVIRDLFLSCNGV 800
801 NQIIELNYLDGIRNHSLKAFETLIISLGEQQKDSSIPGIDGIDLEQKELS 850
851 SLNVGTLYNQQAYSDSQSLSKFYARLKDAYPKKRKSVVQDIHISTINLFL 900
901 CVAFLCVSKEAESDRESANDSEDTSGYDSTASEPLQHMLPCFSLESLVLP 950
951 SPRHMHQAADVWSMCRWIYMLSPIFRKQFYRLGGFQVCHKLIFMVIQDLF 1000
1001 RNPEEEQGRKEGDRTMNENQDLNRISQPEITVKEDLLSLTVKIDPTPTEL 1050
1051 SSLKKSADSLGRLESEHLSSINVEQIPAVEAVPEETKVFMSRESETLLQG 1100
1101 IRLLEALLAICLHGTRASQQKLELELPNQNLSVETILLEMRDHLSKSKVT 1150
1151 ETELAKPLFDALLRVALGNHSADFEHDDAMTEKSHQSEEELSSQPGDFSE 1200
1201 EAEDSQCCSFKLLVEEEGYEADSESNPEDSETWDDGVDLKPEAESFIASS 1250
1251 SPNDLLENLSQGEIIYPEICTLELNLLSTGKAKLDVLAHVFESFLKIIRQ 1300
1301 KEKNIFLLMQQGTVKNLLGGFLSILTQTDSDFQACQRVLVDLLVSLMSSR 1350
1351 TCSEELTLLLRIFLEKSPCTEILLLGILKIVESDITMSPSQYLTFPLLHT 1400
1401 PNLSNGVSSQKCPGILNSKAMGLLRRARVSQSKKEGDSESFPQQLLSSWH 1450
1451 IAPVHLPLLGQPHLSEGFSISLWFNVECIHEPESTTEKGKKTRKRNKSLV 1500
1501 LLDSSFDGTENNRLEGAAYVNPGERLIEEGCVHMISLGSKALIIQVWADP 1550
1551 HTGTFIFRVCMDSNDDTKVVLLAQVESQENIFLPSKWQHLVLTYLQQPQG 1600
1601 KKNIHGKISIWISGQRKPDVTLDFMLPRKTSLSSDSNKTFCMIGHCLSSQ 1650
1651 EESLQLAGKWDLGNLLLFNGAKIGSQEAFYLYACGPNHTSIMPCKYGKPV 1700
1701 NDYSKYINTEILQCEQIRELFMTSKDVDIGLLIESLSVVYTTYCPAQYTI 1750
1751 YEPVIRLKGQMKTQLSQRPFSSKEVHNILLEPHHLKNLQPTECKTLQGIL 1800
1801 HEIGGTGIFVFLFARVVELSSCEETQALALRVILSLIKYNQQRIHELENC 1850
1851 NGLSMIHQVLIKQKCIVGFHILKTLLEGCCGEDIIHINENGELKLDVESN 1900
1901 AIIQDVKLLEELLLDWKIWNKAEHGVWETLLAALEVLIRADHQQQMFNIK 1950
1951 QLLKARVVHHFLLTCQVLQEHKEGQLISMPQEVCRSFVKITAEVLGSPPD 2000
2001 LELLTIIFNFLLAVHPPTNTYVCHNPTNFYFSLHIDGKIFQEKVQSIMYL 2050
2051 RHSSSGGKSVTSPGFMIISPSDFTASPPEGNNSSSAVPKQVTASMLRSRS 2100
2101 LPAFPTASPHIKPRKLTGSLGCSIDKLQSFVDDGVASQPEKWSPLRSSET 2150
2151 LEKSKQDAFISSCESAKMVCETEPALLAQASVSDIPKGALELPAVNIDHK 2200
2201 DFGAEPRSDDDSPGDESCPRRPLYLKGLASFQRSHSTIASLGLAFPSQNG 2250
2251 SAAVGRWPSLVDRNADDWENFALSLGYEPHHSRTAGAHSVTEDCLVPICC 2300
2301 GLYELLSGVLLILPDVMLEDVMDRLIQADTLLVLVNHPSPAVQQEVIKLL 2350
2351 DAYFNRASKEQKDKFLKNRGFSLLANQLYLHRGTQELLECFIEMFFGRRI 2400
2401 GLDEEFDLEDVKNMGLFQKWSVIPILGLIETSLYDNVLLHNALLLLLQIL 2450
2451 NSCSKVADMLLDNGLLYVLCNTVATLNGLEKIIPLNEYRLLACDIQQLFI 2500
2501 AVTIHACSSSGSQYFRVIEDLIVLLGYLQNSKNKRTQNMAVALQFRVLQA 2550
2551 AMEFIRTTANHDSENLTDSLQSPSVPHHTMFQKRKSIAGPRKFLLAQTDS 2600
2601 LLMKMRSVASDELHVMMQRRMSQENPVQATETELAQRLQRLTVFAVNRIV 2650
2651 YQEFNPDIIDILSTPESTTQSRTSASQTEISEENIHHEQPSVFNPFQKEM 2700
2701 FMYLVEGFKVSSASGKTSSSKQQWAKILWSCKETFRMQLGRLLVHMLSPA 2750
2751 HPSQERKQIFEIVREPNHQEILRECLSPSLQHGAKLVLYLSELIHNHKDE 2800
2801 LTEEELDTAELLMNALKLCGHKCIPPSASTKSDLIRVIKEEQRKYETEEG 2850
2851 VNKANWQKTVNNNQQSLFQRLDSKSKDISKIAADITQAVSLSQGIERKKV 2900
2901 IQHIRGMYKVDLSASRHWQELIQQLTHDRAVWYDPIYYPTSWQLDPTEGP 2950
2951 NRERRRLQRCYLTIPNKYLLRDRQKSEDVVKPPLSYLFEDKTHSSFSSTV 3000
3001 KDKAASESIRVNRRCISVAPSRETAGELLLGKCGMYFVEDNASDTVECSN 3050
3051 LQGELEPASFSWTYEEIKEVHKRWWQLRDNAVEIFLTNGRTLLLAFDNTK 3100
3101 VRNDVYHSILTNNLPNLLEYGNITALTHLWYTGQITNFEYLTHLNKHAGR 3150
3151 SFNDLMQYPVFPFILADYVSETLDLSDPSVYRNLSKPIAVQYKEKEDRYV 3200
3201 DTYKYLEEEYRKGAREDDPMPPVQPYHYGSHYSNSGTVLHFLVRMPPFTK 3250
3251 MFLAYQDQSFDIPDRTFHSTNTTWRLSSFESMTDVKELIPEFFYLPEFLV 3300
3301 NREGFDFGVRQNGERVNHVNLPPWARNDPRLFILIHRQALESDYVSQNIC 3350
3351 QWIDLVFGYKQKGKASVQAINVFHPATYFGMDVSAVEDPVQRRALETMIK 3400
3401 TYGQTPRQLFQSAHASRPGSKLNIEGELPAAVGLLVQFAFRETREQVKEI 3450
3451 TYPSPLSWIKGLKWGEYVGSPSAPVPVVCFSQPHGERFGSLQALPTRAIC 3500
3501 GLSRNFCLLMTYSKEQGVRSMNSTDIQWSAILSWGYADNILRLKSKQSEP 3550
3551 PINFIQSSQQYQVTSCAWVPDSCQLFTGSKCGVITAYSNRFTSGTPSEIE 3600
3601 MESQIHLYGHTEEISSLFVCKPYSIMISVSRDGTCIIWDLNRLCYVQSLA 3650
3651 GHKSPVTAVSASETTGDIATVCDSAGGGSDLRLWTVNGDLVGHVHCREII 3700
3701 CSVAFSNQPEGISINVIAGGLENGIVRLWSTWDLKPVREITFPKSNKPIV 3750
3751 SLTFSCDGHHLYTANSDGTVIAWCRKDQQRLKHPMFYSFLSSYAAG 3796
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.