 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9TU23 from www.uniprot.org...
The NucPred score for your sequence is 0.78 (see score help below)
1 ERQLRKENGKQKNELMAMEAEVGEKIGRLQRFKEMAVFKIAALQKVVDNS 50
51 VSLSELELANRQYNELTAKYRDILQKDNMLVQRTNNLEHLECENVSLKEQ 100
101 MESINKELEITKEKLHTIEQAWEQETKLGNESNMDKAKKSVTNSEIVSIS 150
151 KKITMLEMKELNERQRAEHSQKMYEHVKTSLQQVEERNFELETKFAELTR 200
201 INLEAQKVEQMLRDELADSVSKTVSDADRQHILELEKSEMELKVEVSKLK 250
251 EISDIAKRQVEILNAQQQSREKEVESLRTQLLDYQAQSDEKALIAKLHQH 300
301 VVSLQASEAAALGKVESVASKLQKVEAHTLRLEQKLDEKEQALFYARLEG 350
351 RNRAKHLRQTIQSLRRQFSGALPLAQQEKFSKTMIQLQNDKLKIMEEMKN 400
401 SQQEHRSLKNKTLEMELKLKGLEDLISTLKDARGAQKVISWHTKIEELRL 450
451 QELKLNRELVKDKEEIKYLNNIISEYENTISSLEEEIVQQNKFHEERQMA 500
501 WDQREVELERQLDVFDRQQSEILREAQKFEEATGSMPDPSLPIPNQLEIA 550
551 LRKIKENIRIILETQATCRSLEEKLREKESALRLAEENILSRDKVINELR 600
601 LRLPATAEQEKLLAEFSRKEVEPKSHHTLKLAHQTIANMQARLNQKEEVL 650
651 KKYQHLLEKAREEQREIVKKHEEELHTLHRKLELQADNSLSKFKETAWDL 700
701 IKQSPTPVPTNKHFIRLAEMEQTVAEQDDSLSSLVIKLKQVSQDLERQKE 750
751 ITELKIKEFENMKLRLQENHADEVKKIKAEVEDLRCLLVQSQKESQSLKS 800
801 ELQTQKEANSRAPTTTMRNLVERLKSQLALKEKQQKALSRALLELRAEMT 850
851 AAAEERIISMTSQKEANLNVQQIVDRHTKELKSQIEDLNENILKLKEALK 900
901 TSKNRENTLTDNLNDLTNELQNKQKAYGKVLREKDAVDQENNELKRQIKR 950
951 LTSGLQGKPLIDNKQSLIEELQKKIKKLESQLERKVDEAEMKPMKEKSAR 1000
1001 EEVIRWEEGKKWQTKIEGIRNKLKEKEGEVYILTKQLTTLKDLFAKADKE 1050
1051 KLTLQRKLKTTGLTVDQVMAARVLESEKELEELKKRNLDLENDISYMRSH 1100
1101 QALPRDSVIEDLHLQNKYLQEKLHALEKQLSKDAYSRPSTSGIDSDDHYQ 1150
1151 REQELQRENLKLSSENIELKFQLEQANKDLPRLKNQVRDLKEMCEFLKKE 1200
1201 KAEVERKLGRVRGSGRSGKTIPELEKTIGLMKKVVEKVQRENEQLKKASG 1250
1251 ILTSEKMANIEMENEKLKAELEKLKVHLGRQLSMHYESKAKGTEKIVAEN 1300
1301 ERLRKELKKIEILKHVPEGDETEQGLQRELRVLRLANSQLEKEKEELIHR 1350
1351 IEISKDQNGPDSTISDPDHLMEKIKDLETQLRTSDMEKQHLKEEIQKLKK 1400
1401 ELENFDPSFFEEIEDLKYNYKEEVKKNILLEEKLKKLSEQFGVELTSPVA 1450
1451 ASEQFEDEQENPVNFPIY 1468
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.