| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9U1H0 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MNAFQDFELGAKLYLQCLLSLSSSRSATPSYTSPVNHAGASPLNAIAHSP 50
51 VNVSATHRQNFFTPIANQSQQQQQQQPVAVPLDSKWKTTPSPVLYNANNN 100
101 SSNNNTSSSNNNNNSNWEVGSNSNTHVAATAAATSTVGAQPLPPQTTPVS 150
151 LVMHAPPPQQQPLQQQHHHHQPPPPPPASLPAPSAPPTSGSSSSHNSVGH 200
201 ATSVIRISSSQQQHQQQQQHQQQAHPHVVVSGGQTFHPVIVDATQLSVPL 250
251 PPTTVSFHQPNTPTSTAASVASMSQDKMLAKNGYNAPWFKLLPHMTPMSK 300
301 ASPAPVTPTLTTSASSYNVVMMQQQQQHQQLQQQQQLQQQQQSPPQMPLN 350
351 HNNNHLIVSAPLSSPGKPLNCSMNDAKVAAAAAAAAVANQRQKQQQEEPD 400
401 DQLDDDVFETTTPGISANSKKQTAAMRLPTHNSNIRKLEECHDDGAAGAP 450
451 ATSAAKRRSQSLSALQQQQQQQQQAGAAGTAAGQPANKKIRRPMNAFMIF 500
501 SKKHRKMVHKKHPNQDNRTVSKILGEWWYALKPEQKAQYHELASSVKDAH 550
551 FKLHPEWKWCSKDRRKSSTSTATPGGKASGAAGTGDAKQRLVSVDGSDSL 600
601 EHDMCPSTPGGSGSCGGQGISSDLQGDIIPLTIDNYNSTCDEAPTTISMK 650
651 GNGNGKLMKNELPSDEDEQMLVVEEEQQQQTVKKIDLHCRERVNDSDMDD 700
701 TPFDYRKQQPEANQRSAEEHSTSGANGQAINAPPLSGGEREITLKPKAIK 750
751 AHPVLESNMLPYTQMSIYTQYTSPKNPIGVTPFQPTGGAFKSMPISPKGS 800
801 GGKPEDAGSLQAHIKQEDIKQEPPSPYKLNNGSGSASGGGVVSAPPPNSG 850
851 SVGAIFNFNVPTATALSQKQFHYPMHHPHRSPTDLRDEEADREEITQGTK 900
901 SGESSEKDKPALDDQERDEVEEEDEDEEDDDEDDEDDEQFMQELASVNAS 950
951 AGFDDLVPYAMPKVVITPTPTPPPVATIVTPIKRKQFTIVRSLTPLQPSN 1000
1001 SPHQQLKHLHQRRGETPPTVITRVPTPTINHFTIIRTQQHPHTHPHNTPP 1050
1051 PLFFKQKVQGSPVIATVTTSTLSSSSSNPANNEAPNKFSNFPTQHQPTTT 1100
1101 TTISCNTNNNATPIIRKLLTLQEGAELGGSHKGTGRAAILYDALVLDTLH 1150
1151 GQDEEEEEDEGNAEKQENPKVAGKEQVTTSQPATMLLITDVNAYNQQHVA 1200
1201 GNAATPVSGAATLRPVSFISINACNKITLPANARILTAATATSTAAGAAV 1250
1251 TSQAGATLTVMTKASAATNHSSSNASDITITAASAAPVPTSGSSIVMINS 1300
1301 TTNPSTSSNSTSCSAAAHQACVPSSPAGMGLGHAANIATPPASAPAQIMG 1350
1351 GGPASQKMFFAMTHPYTLLQRSHQPGTPSLEHLQLDAFAPGGYTLRNHNG 1400
1401 LSSLPPPVSAQPTMLLHGYPPSHGVEPPARSPSYKSMPSTPKSATYLMSA 1450
1451 PPERGMDGGMSGCASAAASGGDESDIDADGQQFILAPTPAQLGRAPLQRR 1500
1501 KNLSQSKSESNVSFGANLGASNGQHISRKLHSPTMMESSSPIIGHVNSSN 1550
1551 LSSALPTPTSSTTTPNSDEQLPLTPTTSSSNSNLNQQQPKSPMKGAPGST 1600
1601 AAALKKKNDEMNNSVLKQVDFEKKYKALPQFQPEDCQSPSAIAVPSSPRV 1650
1651 YGTNYRKKNTAPPPVQKLMCEDDSIDEPASAPPTTTQRFFGPDFNNELKE 1700
1701 LESSDQTGRSPRTPKTPLQSARSDASEKGHRKVLETRRSLVLQLFAEHGN 1750
1751 FPTAQATMAFQSKHSDVFPRKQDLQLKIREVRQKLLGQASCTPHSAGPNT 1800
1801 PSDSNSSSTTLSASSTSLNMQTTSAADVFQYY 1832
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.