 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9UHC1 from www.uniprot.org...
The NucPred score for your sequence is 0.93 (see score help below)
1 MIKCLSVEVQAKLRSGLAISSLGQCVEELALNSIDAEAKCVAVRVNMETF 50
51 QVQVIDNGFGMGSDDVEKVGNRYFTSKCHSVQDLENPRFYGFRGEALANI 100
101 ADMASAVEISSKKNRTMKTFVKLFQSGKALKACEADVTRASAGTTVTVYN 150
151 LFYQLPVRRKCMDPRLEFEKVRQRIEALSLMHPSISFSLRNDVSGSMVLQ 200
201 LPKTKDVCSRFCQIYGLGKSQKLREISFKYKEFELSGYISSEAHYNKNMQ 250
251 FLFVNKRLVLRTKLHKLIDFLLRKESIICKPKNGPTSRQMNSSLRHRSTP 300
301 ELYGIYVINVQCQFCEYDVCMEPAKTLIEFQNWDTLLFCIQEGVKMFLKQ 350
351 EKLFVELSGEDIKEFSEDNGFSLFDATLQKRVTSDERSNFQEACNNILDS 400
401 YEMFNLQSKAVKRKTTAENVNTQSSRDSEATRKNTNDAFLYIYESGGPGH 450
451 SKMTEPSLQNKDSSCSESKMLEQETIVASEAGENEKHKKSFLEHSSLENP 500
501 CGTSLEMFLSPFQTPCHFEESGQDLEIWKESTTVNGMAANILKNNRIQNQ 550
551 PKRFKDATEVGCQPLPFATTLWGVHSAQTEKEKKKESSNCGRRNVFSYGR 600
601 VKLCSTGFITHVVQNEKTKSTETEHSFKNYVRPGPTRAQETFGNRTRHSV 650
651 ETPDIKDLASTLSKESGQLPNKKNCRTNISYGLENEPTATYTMFSAFQEG 700
701 SKKSQTDCILSDTSPSFPWYRHVSNDSRKTDKLIGFSKPIVRKKLSLSSQ 750
751 LGSLEKFKRQYGKVENPLDTEVEESNGVTTNLSLQVEPDILLKDKNRLEN 800
801 SDVCKITTMEHSDSDSSCQPASHILNSEKFPFSKDEDCLEQQMPSLRESP 850
851 MTLKELSLFNRKPLDLEKSSESLASKLSRLKGSERETQTMGMMSRFNELP 900
901 NSDSSRKDSKLCSVLTQDFCMLFNNKHEKTENGVIPTSDSATQDNSFNKN 950
951 SKTHSNSNTTENCVISETPLVLPYNNSKVTGKDSDVLIRASEQQIGSLDS 1000
1001 PSGMLMNPVEDATGDQNGICFQSEESKARACSETEESNTCCSDWQRHFDV 1050
1051 ALGRMVYVNKMTGLSTFIAPTEDIQAACTKDLTTVAVDVVLENGSQYRCQ 1100
1101 PFRSDLVLPFLPRARAERTVMRQDNRDTVDDTVSSESLQSLFSEWDNPVF 1150
1151 ARYPEVAVDVSSGQAESLAVKIHNILYPYRFTKGMIHSMQVLQQVDNKFI 1200
1201 ACLMSTKTEENGEAGGNLLVLVDQHAAHERIRLEQLIIDSYEKQQAQGSG 1250
1251 RKKLLSSTLIPPLEITVTEEQRRLLWCYHKNLEDLGLEFVFPDTSDSLVL 1300
1301 VGKVPLCFVEREANELRRGRSTVTKSIVEEFIREQLELLQTTGGIQGTLP 1350
1351 LTVQKVLASQACHGAIKFNDGLSLQESCRLIEALSSCQLPFQCAHGRPSM 1400
1401 LPLADIDHLEQEKQIKPNLTKLRKMAQAWRLFGKAECDTRQSLQQSMPPC 1450
1451 EPP 1453
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.