| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9UIF9 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MEMEANDHFNFTGLPPAPAASGLKPSPSSGEGLYTNGSPMNFPQQGKSLN 50
51 GDVNVNGLSTVSHTTTSGILNSAPHSSSTSHLHHPSVAYDCLWNYSQYPS 100
101 ANPGSNLKDPPLLSQFSGGQYPLNGILGGSRQPSSPSHNTNLRAGSQEFW 150
151 ANGTQSPMGLNFDSQELYDSFPDQNFEVMPNGPPSFFTSPQTSPMLGSSI 200
201 QTFAPSQEVGSGIHPDEAAEKEMTSVVAENGTGLVGSLELEEEQPELKMC 250
251 GYNGSVPSVESLHQEVSVLVPDPTVSCLDDPSHLPDQLEDTPILSEDSLE 300
301 PFNSLAPEPVSGGLYGIDDTELMGAEDKLPLEDSPVISALDCPSLNNATA 350
351 FSLLADDSQTSTSIFASPTSPPVLGESVLQDNSFDLNNGSDAEQEEMETQ 400
401 SSDFPPSLTQPAPDQSSTIQLHPATSPAVSPTTSPAVSLVVSPAASPEIS 450
451 PEVCPAASTVVSPAVFSVVSPASSAVLPAVSLEVPLTASVTSPKASPVTS 500
501 PAAAFPTASPANKDVSSFLETTADVEEITGEGLTASGSGDVMRRRIATPE 550
551 EVRLPLQHGWRREVRIKKGSHRWQGETWYYGPCGKRMKQFPEVIKYLSRN 600
601 VVHSVRREHFSFSPRMPVGDFFEERDTPEGLQWVQLSAEEIPSRIQAITG 650
651 KRGRPRNTEKAKTKEVPKVKRGRGRPPKVKITELLNKTDNRPLKKLEAQE 700
701 TLNEEDKAKIAKSKKKMRQKVQRGECQTTIQGQARNKRKQETKSLKQKEA 750
751 KKKSKAEKEKGKTKQEKLKEKVKREKKEKVKMKEKEEVTKAKPACKADKT 800
801 LATQRRLEERQRQQMILEEMKKPTEDMCLTDHQPLPDFSRVPGLTLPSGA 850
851 FSDCLTIVEFLHSFGKVLGFDPAKDVPSLGVLQEGLLCQGDSLGEVQDLL 900
901 VRLLKAALHDPGFPSYCQSLKILGEKVSEIPLTRDNVSEILRCFLMAYGV 950
951 EPALCDRLRTQPFQAQPPQQKAAVLAFLVHELNGSTLIINEIDKTLESMS 1000
1001 SYRKNKWIVEGRLRRLKTVLAKRTGRSEVEMEGPEECLGRRRSSRIMEET 1050
1051 SGMEEEEEEESIAAVPGRRGRRDGEVDATASSIPELERQIEKLSKRQLFF 1100
1101 RKKLLHSSQMLRAVSLGQDRYRRRYWVLPYLAGIFVEGTEGNLVPEEVIK 1150
1151 KETDSLKVAAHASLNPALFSMKMELAGSNTTASSPARARGRPRKTKPGSM 1200
1201 QPRHLKSPVRGQDSEQPQAQLQPEAQLHAPAQPQPQLQLQLQSHKGFLEQ 1250
1251 EGSPLSLGQSQHDLSQSAFLSWLSQTQSHSSLLSSSVLTPDSSPGKLDPA 1300
1301 PSQPPEEPEPDEAESSPDPQALWFNISAQMPCNAAPTPPPAVSEDQPTPS 1350
1351 PQQLASSKPMNRPSAANPCSPVQFSSTPLAGLAPKRRAGDPGEMPQSPTG 1400
1401 LGQPKRRGRPPSKFFKQMEQRYLTQLTAQPVPPEMCSGWWWIRDPEMLDA 1450
1451 MLKALHPRGIREKALHKHLNKHRDFLQEVCLRPSADPIFEPRQLPAFQEG 1500
1501 IMSWSPKEKTYETDLAVLQWVEELEQRVIMSDLQIRGWTCPSPDSTREDL 1550
1551 AYCEHLSDSQEDITWRGRGREGLAPQRKTTNPLDLAVMRLAALEQNVERR 1600
1601 YLREPLWPTHEVVLEKALLSTPNGAPEGTTTEISYEITPRIRVWRQTLER 1650
1651 CRSAAQVCLCLGQLERSIAWEKSVNKVTCLVCRKGDNDEFLLLCDGCDRG 1700
1701 CHIYCHRPKMEAVPEGDWFCTVCLAQQVEGEFTQKPGFPKRGQKRKSGYS 1750
1751 LNFSEGDGRRRRVLLRGRESPAAGPRYSEEGLSPSKRRRLSMRNHHSDLT 1800
1801 FCEIILMEMESHDAAWPFLEPVNPRLVSGYRRIIKNPMDFSTMRERLLRG 1850
1851 GYTSSEEFAADALLVFDNCQTFNEDDSEVGKAGHIMRRFFESRWEEFYQG 1900
1901 KQANL 1905
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.