| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9UJF2 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MQTPEVPAERSPRRRSISGTSTSEKPNSMDTANTSPFKVPGFFSKRLKGS 50
51 IKRTKSQSKLDRNTSFRLPSLRSTDDRSRGLPKLKESRSHESLLSPCSTV 100
101 ECLDLGRGEPVSVKPLHSSILGQDFCFEVTYLSGSKCFSCNSASERDKWM 150
151 ENLRRTVQPNKDNCRRAENVLRLWIIEAKDLAPKKKYFCELCLDDTLFAR 200
201 TTSKTKADNIFWGEHFEFFSLPPLHSITVHIYKDVEKKKKKDKNNYVGLV 250
251 NIPTASVTGRQFVEKWYPVSTPTPNKGKTGGPSIRIKSRFQTITILPMEQ 300
301 YKEFAEFVTSNYTMLCSVLEPVISVRNKEELACALVHILQSTGRAKDFLT 350
351 DLVMSEVDRCGEHDVLIFRENTIATKSIEEYLKLVGQQYLHDALGEFIKA 400
401 LYESDENCEVDPSKCSSSELIDHQSNLKMCCELAFCKIINSYCVFPRELK 450
451 EVFASWKQQCLNRGKQDISERLISASLFLRFLCPAIMSPSLFNLMQEYPD 500
501 DRTSRTLTLIAKVIQNLANFAKFGNKEEYMAFMNDFLEHEWGGMKRFLLE 550
551 ISNPDTISNTPGFDGYIDLGRELSVLHSLLWEVVSQLDKGENSFLQATVA 600
601 KLGPLPRVLADITKSLTNPTPIQQQLRRFTEHNSSPNVSGSLSSGLQKIF 650
651 EDPTDSDLHKLKSPSQDNTDSYFRGKTLLLVQQASSQSMTYSEKDERESS 700
701 LPNGRSVSLMDLQDTHAAQVEHASVMLDVPIRLTGSQLSITQVASIKQLR 750
751 ETQSTPQSAPQVRRPLHPALNQPGGLQPLSFQNPVYHLNNPIPAMPKASI 800
801 DSSLENLSTASSRSQSNSEDFKLSGPSNSSMEDFTKRSTQSEDFSRRHTV 850
851 PDRHIPLALPRQNSTGQAQIRKVDQGGLGARAKAPPSLPHSASLRSTGSM 900
901 SVVSAALVAEPVQNGSRSRQQSSSSRESPVPKVRAIQRQQTQQVQSPVDS 950
951 ATMSPVERTAAWVLNNGQYEEDVEETEQNLDEAKHAEKYEQEITKLKERL 1000
1001 RVSSRRLEEYERRLLVQEQQMQKLLLEYKARLEDSEERLRRQQEEKDSQM 1050
1051 KSIISRLMAVEEELKKDHAEMQAVIDAKQKIIDAQEKRIVSLDSANTRLM 1100
1101 SALTQVKERYSMQVRNGISPTNPTKLSITENGEFKNSSC 1139
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.