| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9UKL3 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MAADDDNGDGTSLFDVFSASPLKNNDEGSLDIYAGLDSAVSDSASKSCVP 50
51 SRNCLDLYEEILTEEGTAKEATYNDLQVEYGKCQLQMKELMKKFKEIQTQ 100
101 NFSLINENQSLKKNISALIKTARVEINRKDEEISNLHQRLSEFPHFRNNH 150
151 KTARTFDTVKTKDLKSRSPHLDDCSKTDHRAKSDVSKDVHHSTSLPNLEK 200
201 EGKPHSDKRSTSHLPTSVEKHCTNGVWSRSHYQVGEGSSNEDSRRGRKDI 250
251 RHSQFNRGTERVRKDLSTGCGDGEPRILEASQRLQGHPEKYGKGEPKTES 300
301 KSSKFKSNSDSDYKGERINSSWEKETPGERSHSRVDSQSDKKLERQSERS 350
351 QNINRKEVKSQDKEERKVDQKPKSVVKDQDHWRRSERASLPHSKNEITFS 400
401 HNSSKYHLEERRGWEDCKRDKSVNSHSFQDGRCPSSLSNSRTHKNIDSKE 450
451 VDAMHQWENTPLKAERHRTEDKRKREQESKEENRHIRNEKRVPTEHLQKT 500
501 NKETKKTTTDLKKQNEPKTDKGEVLDNGVSEGADNKELAMKAESGPNETK 550
551 NKDLKLSFMKKLNLTLSPAKKQPVSQDNQHKITDIPKSSGVCDSESSMQV 600
601 KTVAYVPSISEHILGEAAVSEHTMGETKSTLLEPKVALLAVTEPRIGISE 650
651 TNKEDENSLLVRSVDNTMHCEEPICGTETSFPSPMEIQQTESLFPSTGMK 700
701 QTINNGRAAAPVVMDVLQTDVSQNFGLELDTKRNDNSDYCGISEGMEMKV 750
751 ALSTTVSETTESILQPSIEEADILPIMLSEDNNPKFEPSVIVTPLVESKS 800
801 CHLEPCLPKETLDSSLQQTELMDHRMATGETNSVYHDDDNSVLSIDLNHL 850
851 RPIPEAISPLNSPVRPVAKVLRNESPPQVPVYNNSHKDVFLPNSAHSTSK 900
901 SQSDLNKENQKPIYKSDKCTEADTCKNSPLDELEEGEIRSDSETSKPQES 950
951 FEKNSKRRVSADVRKSKTIPRRGKSTVCLDKDSRKTHVRIHQTNNKWNKR 1000
1001 PDKSSRSSKTEKKDKVMSTSSLEKIVPIIAVPSSEQEIMHMLRMIRKHVR 1050
1051 KNYMKFKAKFSLIQFHRIIESAILSFTSLIKHLNLHKISKSVTTLQKNLC 1100
1101 DIIESKLKQVKKNGIVDRLFEQQLPDMKKKLWKFVDDQLDYLFAKLKKIL 1150
1151 VCDSKSFGRDSDEGKLEKTSKQNAQYSNSQKRSVDNSNRELLKEKLSKSE 1200
1201 DPVHYKSLVGCKKSEENYQDQNNSSINTVKHDIKKNFNICFDNIKNSQSE 1250
1251 ERSLEVHCPSTPKSEKNEGSSIEDAQTSQHATLKPERSFEILTEQQASSL 1300
1301 TFNLVSDAQMGEIFKSLLQGSDLLDSSVNCTEKSEWELKTPEKQLLETLK 1350
1351 CESIPACTTEELVSGVASPCPKMISDDNWSLLSSEKGPSLSSGLSLPVHP 1400
1401 DVLDESCMFEVSTNLPLSKDNVCSVEKSKPCVSSILLEDLAVSLTVPSPL 1450
1451 KSDGHLSFLKPDMSSSSTPEEVISAHFSEDALLEEEDASEQDIHLALESD 1500
1501 NSSSKSSCSSSWTSRSVAPGFQYHPNLPMHAVIMEKSNDHFIVKIRRATP 1550
1551 STSSGLKQSMMPDELLTSLPRHGKEADEGPEKEYISCQNTVFKSVEELEN 1600
1601 SNKNVDGSKSTHEEQSSMIQTQVPDIYEFLKDASDKMGHSDEVADECFKL 1650
1651 HQVWETKVPESIEELPSMEEISHSVGEHLPNTYVDLTKDPVTETKNLGEF 1700
1701 IEVTVLHIDQLGCSGGNLNQSAQILDNSLQADTVGAFIDLTQDASSEAKS 1750
1751 EGNHPALAVEDLGCGVIQVDEDNCKEEKAQVANRPLKCIVEETYIDLTTE 1800
1801 SPSSCEVKKDELKSEPGSNCDNSELPGTLHNSHKKRRNISDLNHPHKKQR 1850
1851 KETDLTNKEKTKKPTQDSCENTEAHQKKASKKKAPPVTKDPSSLKATPGI 1900
1901 KDSSAALATSTSLSAKNVIKKKGEIIILWTRNDDREILLECQKRGPSFKT 1950
1951 FAYLAAKLDKNPNQVSERFQQLMKLFEKSKCR 1982
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.