SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9ULM3 from www.uniprot.org...

The NucPred score for your sequence is 0.70 (see score help below)

   1  MSGIKRTIKETDPDYEDVSVALPNKRHKAIENSARDAAVQKIETIIKEQF    50
51 ALEMKNKEHEIEVIDQRLIEARRMMDKLRACIVANYYASAGLLKVSEGSK 100
101 TCDTMVFNHPAIKKFLESPSRSSSPANQRAETPSANHSESDSLSQHNDFL 150
151 SDKDNNSNMDIEERLSNNMEQRPSRNTGRDTSRITGSHKTEQRNADLTDE 200
201 TSRLFVKKTIVVGNVSKYIPPDKREENDQSTHKWMVYVRGSRREPSINHF 250
251 VKKVWFFLHPSYKPNDLVEVREPPFHLTRRGWGEFPVRVQVHFKDSQNKR 300
301 IDIIHNLKLDRTYTGLQTLGAETVVDVELHRHSLGEDCIYPQSSESDISD 350
351 APPSLPLTIPAPVKASSPIKQSHEPVPDTSVEKGFPASTEAERHTPFYAL 400
401 PSSLERTPTKMTTSQKVTFCSHGNSAFQPIASSCKIVPQSQVPNPESPGK 450
451 SFQPITMSCKIVSGSPISTPSPSPLPRTPTSTPVHVKQGTAGSVINNPYV 500
501 IMDKQPGQVIGATTPSTGSPTNKISTASQVSQGTGSPVPKIHGSSFVTST 550
551 VKQEDSLFASMPPLCPIGSHPKVQSPKPITGGLGAFTKVIIKQEPGEAPH 600
601 VPATGAASQSPLPQYVTVKGGHMIAVSPQKQVITPGEGIAQSAKVQPSKV 650
651 VGVPVGSALPSTVKQAVAISGGQILVAKASSSVSKAVGPKQVVTQGVAKA 700
701 IVSGGGGTIVAQPVQTLTKAQVTAAGPQKSGSQGSVMATLQLPATNLANL 750
751 ANLPPGTKLYLTTNSKNPSGKGKLLLIPQGAILRATNNANLQSGSAASGG 800
801 SGAGGGGGGGGGGGSGSGGGGSTGGGGGTAGGGTQSTAGPGGISQHLTYT 850
851 SYILKQTPQGTFLVGQPSPQTSGKQLTTGSVVQGTLGVSTSSAQGQQTLK 900
901 VISGQKTTLFTQAAHGGQASLMKISDSTLKTVPATSQLSKPGTTMLRVAG 950
951 GVITTATSPAVALSANGPAQQSEGMAPVSSSTVSSVTKTSGQQQVCVSQA 1000
1001 TVGTCKAATPTVVSATSLVPTPNPISGKATVSGLLKIHSSQSSPQQAVLT 1050
1051 IPSQLKPLSVNTSGGVQTILMPVNKVVQSFSTSKPPAILPVAAPTPVVPS 1100
1101 SAPAAVAKVKTEPETPGPSCLSQEGQTAVKTEESSELGNYVIKIDHLETI 1150
1151 QQLLTAVVKKIPLITAKSEDASCFSAKSVEQYYGWNIGKRRAAEWQRAMT 1200
1201 MRKVLQEILEKNPRFHHLTPLKTKHIAHWCRCHGYTPPDPESLRNDGDSI 1250
1251 EDVLTQIDSEPECPSSFSSADNLCRKLEDLQQFQKREPENEEEVDILSLS 1300
1301 EPVKINIKKEQEEKQEEVKFYLPPTPGSEFIGDVTQKIGITLQPVALHRN 1350
1351 VYASVVEDMILKATEQLVNDILRQALAVGYQTASHNRIPKEITVSNIHQA 1400
1401 ICNIPFLDFLTNKHMGILNEDQ 1422

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.