 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9UMN6 from www.uniprot.org...
The NucPred score for your sequence is 0.90 (see score help below)
1 MAAAAGGGSCPGPGSARGRFPGRPRGAGGGGGRGGRGNGAERVRVALRRG 50
51 GGATGPGGAEPGEDTALLRLLGLRRGLRRLRRLWAGPRVQRGRGRGRGRG 100
101 WGPSRGCVPEEESSDGESDEEEFQGFHSDEDVAPSSLRSALRSQRGRAPR 150
151 GRGRKHKTTPLPPPRLADVAPTPPKTPARKRGEEGTERMVQALTELLRRA 200
201 QAPQAPRSRACEPSTPRRSRGRPPGRPAGPCRRKQQAVVVAEAAVTIPKP 250
251 EPPPPVVPVKHQTGSWKCKEGPGPGPGTPRRGGQSSRGGRGGRGRGRGGG 300
301 LPFVIKFVSRAKKVKMGQLSLGLESGQGQGQHEESWQDVPQRRVGSGQGG 350
351 SPCWKKQEQKLDDEEEEKKEEEEKDKEGEEKEERAVAEEMMPAAEKEEAK 400
401 LPPPPLTPPAPSPPPPLPPPSTSPPPPLCPPPPPPVSPPPLPSPPPPPAQ 450
451 EEQEESPPPVVPATCSRKRGRPPLTPSQRAEREAARAGPEGTSPPTPTPS 500
501 TATGGPPEDSPTVAPKSTTFLKNIRQFIMPVVSARSSRVIKTPRRFMDED 550
551 PPKPPKVEVSPVLRPPITTSPPVPQEPAPVPSPPRAPTPPSTPVPLPEKR 600
601 RSILREPTFRWTSLTRELPPPPPAPPPPPAPSPPPAPATSSRRPLLLRAP 650
651 QFTPSEAHLKIYESVLTPPPLGAPEAPEPEPPPADDSPAEPEPRAVGRTN 700
701 HLSLPRFAPVVTTPVKAEVSPHGAPALSNGPQTQAQLLQPLQALQTQLLP 750
751 QALPPPQPQLQPPPSPQQMPPLEKARIAGVGSLPLSGVEEKMFSLLKRAK 800
801 VQLFKIDQQQQQKVAASMPLSPGGQMEEVAGAVKQISDRGPVRSEDESVE 850
851 AKRERPSGPESPVQGPRIKHVCRHAAVALGQARAMVPEDVPRLSALPLRD 900
901 RQDLATEDTSSASETESVPSRSRRGKVEAAGPGGESEPTGSGGTLAHTPR 950
951 RSLPSHHGKKMRMARCGHCRGCLRVQDCGSCVNCLDKPKFGGPNTKKQCC 1000
1001 VYRKCDKIEARKMERLAKKGRTIVKTLLPWDSDESPEASPGPPGPRRGAG 1050
1051 AGGPREEVVAHPGPEEQDSLLQRKSARRCVKQRPSYDIFEDSDDSEPGGP 1100
1101 PAPRRRTPRENELPLPEPEEQSRPRKPTLQPVLQLKARRRLDKDALAPGP 1150
1151 FASFPNGWTGKQKSPDGVHRVRVDFKEDCDLENVWLMGGLSVLTSVPGGP 1200
1201 PMVCLLCASKGLHELVFCQVCCDPFHPFCLEEAERPLPQHHDTWCCRRCK 1250
1251 FCHVCGRKGRGSKHLLECERCRHAYHPACLGPSYPTRATRKRRHWICSAC 1300
1301 VRCKSCGATPGKNWDVEWSGDYSLCPRCTQLYEKGNYCPICTRCYEDNDY 1350
1351 ESKMMQCAQCDHWVHAKCEGLSDEDYEILSGLPDSVLYTCGPCAGAAQPR 1400
1401 WREALSGALQGGLRQVLQGLLSSKVVGPLLLCTQCGPDGKQLHPGPCGLQ 1450
1451 AVSQRFEDGHYKSVHSFMEDMVGILMRHSEEGETPDRRAGGQMKGLLLKL 1500
1501 LESAFGWFDAHDPKYWRRSTRLPNGVLPNAVLPPSLDHVYAQWRQQEPET 1550
1551 PESGQPPGDPSAAFQGKDPAAFSHLEDPRQCALCLKYGDADSKEAGRLLY 1600
1601 IGQNEWTHVNCAIWSAEVFEENDGSLKNVHAAVARGRQMRCELCLKPGAT 1650
1651 VGCCLSSCLSNFHFMCARASYCIFQDDKKVFCQKHTDLLDGKEIVNPDGF 1700
1701 DVLRRVYVDFEGINFKRKFLTGLEPDAINVLIGSIRIDSLGTLSDLSDCE 1750
1751 GRLFPIGYQCSRLYWSTVDARRRCWYRCRILEYRPWGPREEPAHLEAAEE 1800
1801 NQTIVHSPAPSSEPPGGEDPPLDTDVLVPGAPERHSPIQNLDPPLRPDSG 1850
1851 SAPPPAPRSFSGARIKVPNYSPSRRPLGGVSFGPLPSPGSPSSLTHHIPT 1900
1901 VGDPDFPAPPRRSRRPSPLAPRPPPSRWASPPLKTSPQLRVPPPTSVVTA 1950
1951 LTPTSGELAPPGPAPSPPPPEDLGPDFEDMEVVSGLSAADLDFAASLLGT 2000
2001 EPFQEEIVAAGAMGSSHGGPGDSSEEESSPTSRYIHFPVTVVSAPGLAPS 2050
2051 ATPGAPRIEQLDGVDDGTDSEAEAVQQPRGQGTPPSGPGVVRAGVLGAAG 2100
2101 DRARPPEDLPSEIVDFVLKNLGGPGDGGAGPREESLPPAPPLANGSQPSQ 2150
2151 GLTASPADPTRTFAWLPGAPGVRVLSLGPAPEPPKPATSKIILVNKLGQV 2200
2201 FVKMAGEGEPVPPPVKQPPLPPTISPTAPTSWTLPPGPLLGVLPVVGVVR 2250
2251 PAPPPPPPPLTLVLSSGPASPPRQAIRVKRVSTFSGRSPPAPPPYKAPRL 2300
2301 DEDGEASEDTPQVPGLGSGGFSRVRMKTPTVRGVLDLDRPGEPAGEESPG 2350
2351 PLQERSPLLPLPEDGPPQVPDGPPDLLLESQWHHYSGEASSSEEEPPSPD 2400
2401 DKENQAPKRTGPHLRFEISSEDGFSVEAESLEGAWRTLIEKVQEARGHAR 2450
2451 LRHLSFSGMSGARLLGIHHDAVIFLAEQLPGAQRCQHYKFRYHQQGEGQE 2500
2501 EPPLNPHGAARAEVYLRKCTFDMFNFLASQHRVLPEGATCDEEEDEVQLR 2550
2551 STRRATSLELPMAMRFRHLKKTSKEAVGVYRSAIHGRGLFCKRNIDAGEM 2600
2601 VIEYSGIVIRSVLTDKREKFYDGKGIGCYMFRMDDFDVVDATMHGNAARF 2650
2651 INHSCEPNCFSRVIHVEGQKHIVIFALRRILRGEELTYDYKFPIEDASNK 2700
2701 LPCNCGAKRCRRFLN 2715
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.