| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9UPA5 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MGNEVSLEGGAGDGPLPPGGAGPGPGPGPGPGAGKPPSAPAGGGQLPAAG 50
51 AARSTAVPPVPGPGPGPGPGPGPGSTSRRLDPKEPLGNQRAASPTPKQAS 100
101 ATTPGHESPRETRAQGPAGQEADGPRRTLQVDSRTQRSGRSPSVSPDRGS 150
151 TPTSPYSVPQIAPLPSSTLCPICKTSDLTSTPSQPNFNTCTQCHNKVCNQ 200
201 CGFNPNPHLTQVKEWLCLNCQMQRALGMDMTTAPRSKSQQQLHSPALSPA 250
251 HSPAKQPLGKPDQERSRGPGGPQPGSRQAETARATSVPGPAQAAAPPEVG 300
301 RVSPQPPQPTKPSTAEPRPPAGEAPAKSATAVPAGLGATEQTQEGLTGKL 350
351 FGLGASLLTQASTLMSVQPEADTQGQPAPSKGTPKIVFNDASKEAGPKPL 400
401 GSGPGPGPAPGAKTEPGARMGPGSGPGALPKTGGTTSPKHGRAEHQAASK 450
451 AAAKPKTMPKERAICPLCQAELNVGSKSPANYNTCTTCRLQVCNLCGFNP 500
501 TPHLVEKTEWLCLNCQTKRLLEGSLGEPTPLPPPTSQQPPVGAPHRASGT 550
551 SPLKQKGPQGLGQPSGPLPAKASPLSTKASPLPSKASPQAKPLRASEPSK 600
601 TPSSVQEKKTRVPTKAEPMPKPPPETTPTPATPKVKSGVRRAEPATPVVK 650
651 AVPEAPKGGEAEDLVGKPYSQDASRSPQSLSDTGYSSDGISSSQSEITGV 700
701 VQQEVEQLDSAGVTGPHPPSPSEIHKVGSSMRPLLQAQGLAPSERSKPLS 750
751 SGTGEEQKQRPHSLSITPEAFDSDEELEDILEEDEDSAEWRRRREQQDTA 800
801 ESSDDFGSQLRHDYVEDSSEGGLSPLPPQPPARAAELTDEDFMRRQILEM 850
851 SAEEDNLEEDDTATSGRGLAKHGTQKGGPRPRPEPSQEPAALPKRRLPHN 900
901 ATTGYEELLPEGGSAEATDGSGTLQGGLRRFKTIELNSTGSYGHELDLGQ 950
951 GPDPSLDREPELEMESLTGSPEDRSRGEHSSTLPASTPSYTSGTSPTSLS 1000
1001 SLEEDSDSSPSRRQRLEEAKQQRKARHRSHGPLLPTIEDSSEEEELREEE 1050
1051 ELLREQEKMREVEQQRIRSTARKTRRDKEELRAQRRRERSKTPPSNLSPI 1100
1101 EDASPTEELRQAAEMEELHRSSCSEYSPSPSLDSEAEALDGGPSRLYKSG 1150
1151 SEYNLPTFMSLYSPTETPSGSSTTPSSGRPLKSAEEAYEEMMRKAELLQR 1200
1201 QQGQAAGARGPHGGPSQPTGPRGLGSFEYQDTTDREYGQAAQPAAEGTPA 1250
1251 SLGAAVYEEILQTSQSIVRMRQASSRDLAFAEDKKKEKQFLNAESAYMDP 1300
1301 MKQNGGPLTPGTSPTQLAAPVSFSTPTSSDSSGGRVIPDVRVTQHFAKET 1350
1351 QDPLKLHSSPASPSSASKEIGMPFSQGPGTPATTAVAPCPAGLPRGYMTP 1400
1401 ASPAGSERSPSPSSTAHSYGHSPTTANYGSQTEDLPQAPSGLAAAGRAAR 1450
1451 EKPLSASDGEGGTPQPSRAYSYFASSSPPLSPSSPSESPTFSPGKMGPRA 1500
1501 TAEFSTQTPSPAPASDMPRSPGAPTPSPMVAQGTQTPHRPSTPRLVWQES 1550
1551 SQEAPFMVITLASDASSQTRMVHASASTSPLCSPTETQPTTHGYSQTTPP 1600
1601 SVSQLPPEPPGPPGFPRVPSAGADGPLALYGWGALPAENISLCRISSVPG 1650
1651 TSRVEPGPRTPGTAVVDLRTAVKPTPIILTDQGMDLTSLAVEARKYGLAL 1700
1701 DPIPGRQSTAVQPLVINLNAQEHTFLATATTVSITMASSVFMAQQKQPVV 1750
1751 YGDPYQSRLDFGQGGGSPVCLAQVKQVEQAVQTAPYRSGPRGRPREAKFA 1800
1801 RYNLPNQVAPLARRDVLITQMGTAQSIGLKPGPVPEPGAEPHRATPAELR 1850
1851 SHALPGARKPHTVVVQMGEGTAGTVTTLLPEEPAGALDLTGMRPESQLAC 1900
1901 CDMVYKLPFGSSCTGTFHPAPSVPEKSMADAAPPGQSSSPFYGPRDPEPP 1950
1951 EPPTYRAQGVVGPGPHEEQRPYPQGLPGRLYSSMSDTNLAEAGLNYHAQR 2000
2001 IGQLFQGPGRDSAMDLSSLKHSYSLGFADGRYLGQGLQYGSVTDLRHPTD 2050
2051 LLAHPLPMRRYSSVSNIYSDHRYGPRGDAVGFQEASLAQYSATTAREISR 2100
2101 MCAALNSMDQYGGRHGSGGGGPDLVQYQPQHGPGLSAPQSLVPLRPGLLG 2150
2151 NPTFPEGHPSPGNLAQYGPAAGQGTAVRQLLPSTATVRAADGMIYSTINT 2200
2201 PIAATLPITTQPASVLRPMVRGGMYRPYASGGITAVPLTSLTRVPMIAPR 2250
2251 VPLGPTGLYRYPAPSRFPIASSVPPAEGPVYLGKPAAAKAPGAGGPSRPE 2300
2301 MPVGAAREEPLPTTTPAAIKEAAGAPAPAPLAGQKPPADAAPGGGSGALS 2350
2351 RPGFEKEEASQEERQRKQQEQLLQLERERVELEKLRQLRLQEELERERVE 2400
2401 LQRHREEEQLLVQRELQELQTIKHHVLQQQQEERQAQFALQREQLAQQRL 2450
2451 QLEQIQQLQQQLQQQLEEQKQRQKAPFPAACEAPGRGPPLAAAELAQNGQ 2500
2501 YWPPLTHAAFIAMAGPEGLGQPREPVLHRGLPSSASDMSLQTEEQWEASR 2550
2551 SGIKKRHSMPRLRDACELESGTEPCVVRRIADSSVQTDDEDGESRYLLSR 2600
2601 RRRARRSADCSVQTDDEDSAEWEQPVRRRRSRLPRHSDSGSDSKHDATAS 2650
2651 SSSAAATVRAMSSVGIQTISDCSVQTEPDQLPRVSPAIHITAATDPKVEI 2700
2701 VRYISAPEKTGRGESLACQTEPDGQAQGVAGPQLVGPTAISPYLPGIQIV 2750
2751 TPGPLGRFEKKKPDPLEIGYQAHLPPESLSQLVSRQPPKSPQVLYSPVSP 2800
2801 LSPHRLLDTSFASSERLNKAHVSPQKHFTADSALRQQTLPRPMKTLQRSL 2850
2851 SDPKPLSPTAEESAKERFSLYQHQGGLGSQVSALPPNSLVRKVKRTLPSP 2900
2901 PPEEAHLPLAGQASPQLYAASLLQRGLTGPTTVPATKASLLRELDRDLRL 2950
2951 VEHESTKLRKKQAELDEEEKEIDAKLKYLELGITQRKESLAKDRGGRDYP 3000
3001 PLRGLGEHRDYLSDSELNQLRLQGCTTPAGQFVDFPATAAAPATPSGPTA 3050
3051 FQQPRFQPPAPQYSAGSGGPTQNGFPAHQAPTYPGPSTYPAPAFPPGASY 3100
3101 PAEPGLPNQQAFRPTGHYAGQTPMPTTQSTLFPVPADSRAPLQKPRQTSL 3150
3151 ADLEQKVPTNYEVIASPVVPMSSAPSETSYSGPAVSSGYEQGKVPEVPRA 3200
3201 GDRGSVSQSPAPTYPSDSHYTSLEQNVPRNYVMIDDISELTKDSTSTAPD 3250
3251 SQRLEPLGPGSSGRPGKEPGEPGVLDGPTLPCCYARGEEESEEDSYDPRG 3300
3301 KGGHLRSMESNGRPASTHYYGDSDYRHGARVEKYGPGPMGPKHPSKSLAP 3350
3351 AAISSKRSKHRKQGMEQKISKFSPIEEAKDVESDLASYPPPAVSSSLVSR 3400
3401 GRKFQDEITYGLKKNVYEQQKYYGMSSRDAVEDDRIYGGSSRSRAPSAYS 3450
3451 GEKLSSHDFSGWGKGYEREREAVERLQKAGPKPSSLSMAHSRVRPPMRSQ 3500
3501 ASEEESPVSPLGRPRPAGGPLPPGGDTCPQFCSSHSMPDVQEHVKDGPRA 3550
3551 HAYKREEGYILDDSHCVVSDSEAYHLGQEETDWFDKPRDARSDRFRHHGG 3600
3601 HAVSSSSQKRGPARHSYHDYDEPPEEGLWPHDEGGPGRHASAKEHRHGDH 3650
3651 GRHSGRHTGEEPGRRAAKPHARDLGRHEARPHSQPSSAPAMPKKGQPGYP 3700
3701 SSAEYSQPSRASSAYHHASDSKKGSRQAHSGPAALQSKAEPQAQPQLQGR 3750
3751 QAAPGPQQSQSPSSRQIPSGAASRQPQTQQQQQGLGLQPPQQALTQARLQ 3800
3801 QQSQPTTRGSAPAASQPAGKPQPGPSTATGPQPAGPPRAEQTNGSKGTAK 3850
3851 APQQGRAPQAQPAPGPGPAGVKAGARPGGTPGAPAGQPGADGESVFSKIL 3900
3901 PGGAAEQAGKLTEAVSAFGKKFSSFW 3926
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.