 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9UPZ3 from www.uniprot.org...
The NucPred score for your sequence is 0.75 (see score help below)
1 MAFVPVIPESYSHVLAEFESLDPLLSALRLDSSRLKCTSIAVSRKWLALG 50
51 SSGGGLHLIQKEGWKHRLFLSHREGAISQVACCLHDDDYVAVATSQGLVV 100
101 VWELNQERRGKPEQMYVSSEHKGRRVTALCWDTAILRVFVGDHAGKVSAI 150
151 KLNTSKQAKAAAAFVMFPVQTITTVDSCVVQLDYLDGRLLISSLTRSFLC 200
201 DTEREKFWKIGNKERDGEYGACFFPGRCSGGQQPLIYCARPGSRMWEVNF 250
251 DGEVISTHQFKKLLSLPPLPVITLRSEPQYDHTAGSSQSLSFPKLLHLSE 300
301 HCVLTWTERGIYIFIPQNVQVLLWSEVKDIQDVAVCRNELFCLHLNGKVS 350
351 HLSLISVERCVERLLRRGLWNLAARTCCLFQNSVIASRARKTLTADKLEH 400
401 LKSQLDHGTYNDLISQLEELILKFEPLDSACSSRRSSISSHESFSILDSG 450
451 IYRIISSRRGSQSDEDSCSLHSQTLSEDERFKEFTSQQEEDLPDQCCGSH 500
501 GNEDNVSHAPVMFETDKNETFLPFGIPLPFRSPSPLVSLQAVKESVSSFV 550
551 RKTTEKIGTLHTSPDLKVRPELRGDEQSCEEDVSSDTCPKEEDTEEEKEV 600
601 TSPPPEEDRFQELKVATAEAMTKLQDPLVLFESESLRMVLQEWLSHLEKT 650
651 FAMKDFSGVSDTDNSSMKLNQDVLLVNESKKGILDEDNEKEKRDSLGNEE 700
701 SVDKTACECVRSPRESLDDLFQICSPCAIASGLRNDLAELTTLCLELNVL 750
751 NSKIKSTSGHVDHTLQQYSPEILACQFLKKYFFLLNLKRAKESIKLSYSN 800
801 SPSVWDTFIEGLKEMASSNPVYMEMEKGDLPTRLKLLDDEVPFDSPLLVV 850
851 YATRLYEKFGESALRSLIKFFPSILPSDIIQLCHHHPAEFLAYLDSLVKS 900
901 RPEDQRSSFLESLLQPESLRLDWLLLAVSLDAPPSTSTMDDEGYPRPHSH 950
951 LLSWGYSQLILHLIKLPADFITKEKMTDICRSCGFWPGYLILCLELERRR 1000
1001 EAFTNIVYLNDMSLMEGDNGWIPETVEEWKLLLHLIQSKSTRPAPQESLN 1050
1051 GSLSDGPSPINVENVALLLAKAMGPDRAWSLLQECGLALELSEKFTRTCD 1100
1101 ILRIAEKRQRALIQSMLEKCDRFLWSQQA 1129
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.