SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9URV2 from www.uniprot.org...

The NucPred score for your sequence is 0.67 (see score help below)

   1  MLELKTNVIQDPELKDSLDLQENDRVEIIGDAVHYIVNDHLNRVFNYTVD    50
51 QQKIHAALITTFASGKKAIVVILDDIGYVYYVGDNNNDSYIINVPFSTES 100
101 AWSSPSGLYLQRHRSSDENLNTDLPHIFCLNDPLDELTLIKFDGKKILSL 150
151 FDSIVYVVGEIVVTHNKKEKKLSFWRSRFIDPESDQSIKSSRNRRRESSF 200
201 SREKNPDLTRSDSIHYTANTRLSEKFEEQGLAYSTIFSHIESFPITGSTS 250
251 FDSILGNGVLVITTLVKELEKGYMMLFRLVRDRSPYFLDSLQLHAINLSA 300
301 IKSKHLQKIVVLSSKGKVSLESPMSPSLPIEGTFRSFRVHGATLYLEDTD 350
351 GVQRYISLDNRASNSLVKWCLSVIRYVLPLREYEIFYTGHLYALFAFKLS 400
401 HDEAFISSILACFTFFSRDKVHVEPIEDCNEAYSLSSKFHFKKEILIASQ 450
451 LSSHLDYSTFKNYLMPLAITLHFISEELRLDSVVKPRKDQLVALLLQITT 500
501 WLKWPRYCEYYNFDIAETFLSIPLSIQVDVEEPVGPTSILQWIIECLRSQ 550
551 STVPFYGLESYGLPHSCSTMFPQTLSLMQLLDCLLNPNMTLQNLVEEMVR 600
601 LGISRKRCERYPFGILCIIFTVLEIAAEEYSPNWESEELRLVNRLDVDSF 650
651 LHPKTPKWVFNKQDQEVKEIKALTSTVTDSTLVDTQSFHPYKVVTDMIFR 700
701 EDRRLAEVNKLLNYSSQITIMTEHFDVDLSSVPMQQKVAQCICVRTLSVP 750
751 IGAGMLTYGSKNPLPTEKVTPRLFNFTLHLHPGTLIIQPNKEFVTQELTE 800
801 WPEFNVGVALGLSISKFSKEINTSWIMFNRPETLTAYHAGFLFGLGLNGH 850
851 LKALATWHSFIYLTSKHDTTSIGLLLGLASSYLGSMDAKVTKLLSVHISA 900
901 LLPVGSNELNISPLTQTAGILGIGLLFHDSCHRRMSEVTMEEILASNESE 950
951 LKNEGYKLAAGFSLGLINLGRGSNLPGMSDLKLVSRLQVGISSQATFQSL 1000
1001 EAGSPGAIMALTMIYMKTNDLEVAKKIDIPKSRYLLDFYRPDLILLRVAG 1050
1051 KNLIMWDEVKADYEWVKYQIPDIMLSQFDLQEKKVLSSDDLLLYNVLAGI 1100
1101 CFSLGLRFAGTGNPKAKEILINFLDSFIRLCHLPAKTHDERVTAVTVIRC 1150
1151 TQIVALSSSCVMAGYCDLDVLRRLRVLHGRMEPVNYGAQMATHMALGILS 1200
1201 LGGGRYSLSRSNLAIAALLISFYPQFPRTTQDNRAHLQAARNLWALAVEE 1250
1251 RCIIPRNQDTKQPCIVPLNVVQKSGAVQKLEAPILLPPYDSISSVSTLGD 1300
1301 KYWNLKIDLDNNSDYRELLRESQTLTLMPYDRTSSKEEPLNLFPKLKDTS 1350
1351 SPLWNLVKTSRLFQSSNSPLNVASLQESNNKTSLGVKLLLSMDFDNLTRD 1400
1401 RLLSLQILLQFFESCWTGVLLNKFHSRQYLFLSRDLVEDLSLRVWEYVYS 1450
1451 HNHNEESV 1458

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.