SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9V8R9 from www.uniprot.org...

The NucPred score for your sequence is 0.69 (see score help below)

   1  MPAEIKPSAPAEPETPTKSKPKSSSSSHGKPALARVTLLDGSLLDVSIDR    50
51 KAIGRDVINSICAGLNLIEKDYFGLTYETPTDPRTWLDLEKPVSKFFRTD 100
101 TWPLTFAVKFYPPEPSQLKEDITRYHLCLQVRNDILEGRLPCTFVTHALL 150
151 GSYLVQSEMGDYDAEEMPTRAYLKDFKIAPNQTAELEDKVMDLHKTHKGQ 200
201 SPAEAELHYLENAKKLAMYGVDLHPAKDSEGVDIMLGVCASGLLVYRDKL 250
251 RINRFAWPKILKISYKRHHFYIKIRPGEFEQYESTIGFKLANHRAAKKLW 300
301 KSCVEHHTFFRLMTPEPVSKSKMFPVFGSTYRYKGRTQAESTNTPVDRTP 350
351 PKFNRTLSGARLTSRSMDALALAEKEKVARKSSTLDHRGDRNADGDAHSR 400
401 SPIKNKKEKDADKEAKLREKKQKEKEEKERKEREKRELEEKKKAEKAAKA 450
451 ALAAGAAAGAAVNGNDELNDSNKSDKSSGRRGVGIFSSGRKSKSGSPSKD 500
501 GKDKSGKDKDKEVGRLGLVVTSGLGDNQQDQNLDEAARNAAKNRGSTTPG 550
551 VTRQYEYAVDNDGNTSPTRKSYTPGGFRYDQDPNSRKSGADGQEQLSPTS 600
601 QQKKIGLAFNYAPGNENALKETAEKLKAGQLSPRTQDKLNRGQLSPKSRA 650
651 KLLQDPLLSPTTRAKLQGSAVDAAAVPLSDSQKRSYSPTKGPQGYSSGAP 700
701 GSYKPISDPTADFLESQRYNKEPGYVGPSKADVAAGLAGAAGSKKPGSPT 750
751 KTGKGAPGAAAAAAAGAAGAAAAAAKPKKRRVKIMVITSKFDPSTKRIDA 800
801 ENGSIEHSTGILDPATGLIDTKYGVIDPKKGTLEALNTKTGKKEVFQGDV 850
851 DGKTGNLHLVSGVADPKTGRLDDTLGQIVCITPQDNPVVELTVITSRIDP 900
901 ATGKIDTVNGDVERSLGVLNLDTGLLDTKYGEINTRTGELKAIDPKSGKI 950
951 VVSKNVKVDPGTGQITILGIVDPKTNKIDPNQGRLIEVGQQIDPIVEVTS 1000
1001 LAGKFDSKRNIIDPKTAQVETSGGQFDPKAGKIDTKYGQIDLVKHTITFN 1050
1051 DPKSGKTVTRDIKIEPTTGQIVLKNQVNPKNNKPDKDYARIISLRIVQQR 1100
1101 VDPATKAPITEVSASKDKDIVVDPKSNQIWVPTGATDPATKEQQYISSSV 1150
1151 DPKTGYVITIYGYLDPKTNEIKKQTKLDPNTIKIEPTSGKIYTATGEVDQ 1200
1201 ATGEPLYAATQVDPESGEVYTKLARVDPKTGKIVIVRILLISKTDERGRP 1250
1251 EEIDPSTCEIDPVSGRVLKFFNKTVYVYNMIDPVTGEIVQVDPNDPRFAG 1300
1301 ARTTVTHTMTLTGEIDPVTGRIKSEYGDIDPNTGDIDPATAVTDPVTGKL 1350
1351 ILNYAQIDPSHFGKQAQVQTTTETVPITRQQFFDGVKHISKGALRRDSEG 1400
1401 SSDDDMTAQYGADQVNEILIGSPAGQAGGKLGKPVSTPTVVKTTTKQVLT 1450
1451 KNIDGVTHNVEEEVRNLGTGEVTYSTQEHKADATPTDLSGAYVTATAVTT 1500
1501 RTATTHEDLGKNAKTEQLEEKTVATTRTHDPNKQQQRVVTQEVKTTATVT 1550
1551 SGDQYQRRDSVSSTSSGDSGTPIDGPYDGASVVRTDNQKSPLFTTSATTG 1600
1601 PHVESTRVVLGEDTPGFSGHGEIISTQTVSSKTRTVETITYKTERDGIVE 1650
1651 TRVEQKITIQSDGDPIDHDKALAEAIQEATAMNPDMTVEKIEIQQQTQ 1698

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.