SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9VGI8 from www.uniprot.org...

The NucPred score for your sequence is 0.93 (see score help below)

   1  MSKKPVAQRKQLTLSSFIGLDGNSQSQPKSRAASVRSKPPAVYNPIFLDA    50
51 SSSDDETTEISSQSNNGTIATKKSSRDPRTAKLKKHTYLDLSVSPLAKLS 100
101 AKKYARDSPKKPTSLDLSVSPLAELLAKKSDRDSPKKPVQNENSYTYRGL 150
151 SESPVENKSIGDTLRKPPQKERKTSIVWLSDSPEKKVTQNERKILDSPLQ 200
201 RFSFEDFPNKENGNRHHLLTLPDSPPPPQPVKKPEKTMWQNETKTIQDKD 250
251 SPANPLVSNNLASISTLLDSSRAPNTYKGSSRNLFEDSPEKSGSGEQGYK 300
301 LGSAKENEIPTKPATASLERNSVTSSPSPAAPLKPRYSVAFDNSLADYLK 350
351 DLAQNDNFSIDPNKQNTETLKSTLGFFRNTYVELMEKYCSLIDQIPAMHF 400
401 NEIAGFQPNTFLKLKVMRQKFKARTQLVQNSLDKKESQLKAEQEALEKEE 450
451 IEMQAEQAQQTVLSSSSPEKSRPIMPLPKVQEIKDEKIPNRNQLIHDLCG 500
501 EPDNFSPPSSPRDTQLIPKRQQLINDLCGEPDDFSPPSKQNDPHLLRKCE 550
551 ELVHDLCEEPDDYLAQSMMLDGDLEEEQLNGPTQGTTTSGMDDDEDDLEG 600
601 LLAEIEDEHQKMQGRRSEFNGYSYKELEAVKVKEKHKETPINISLDDDGF 650
651 PEYDEAMFEQMHSQAAANKSRVSSAGPSTSKSVVPTKQTSALHSQKLSGN 700
701 FHANVHNDGITGEFDGQKFEHSTRLMHGLSYSFGLKSFRPNQLQVINATL 750
751 LGNDCFVLMPTGGGKSLCYQLPAILTEGVTIVISPLKSLIFDQINKLASL 800
801 DICAKSLSGEQKMADVMAIYRDLESQPPMVKLLYVTPEKISSSARFQDTL 850
851 DTLNSNNYISRFVIDEAHCVSQWGHDFRPDYKKLGVLKKRFPNVPTIALT 900
901 ATATPRVRLDILAQLNLKNCKWFLSSFNRSNLRYRVLPKKGVSTLDDISR 950
951 YIRSKPQHFSGIIYCLSRKECDETSKKMCKDGVRAVSYHAGLTDTDRESR 1000
1001 QKDWLTGKMRVICATVAFGMGIDKPDVRFVLHYSLPKSIEGYYQEAGRAG 1050
1051 RDGDVADCILYYNYSDMLRIKKMLDSDKALQYNVKKIHVDNLYRIVGYCE 1100
1101 NLTDCRRAQQLDYFGEHFTSEQCLENRETACDNCINKRAYKAVDALEHAR 1150
1151 KAARAVKDLCSGRSRFTLLHIADVLKGSKIKKIIDFNHHKTPHHGVLKDW 1200
1201 DKNDVHRLLRKMVIDGFLREDLIFTNDFPQAYLYLGNNISKLMEGTPNFE 1250
1251 FAVTKNAKEAKAAVGSVSDGATSSTADGQSGMREIHERCYTDLLDLCRTI 1300
1301 ASQRNVTMASIMNIQALKSMAETLPITEKDMCSIPHVTKANFDKYGAKLL 1350
1351 EITSNYASEKLLMQAVLDEEEEQAAAKQRPSTSGWNNESVDWDMAVASQG 1400
1401 NANTSGASGFNSFRAGKRKKIYKSGASKRYKTSTTSPAARKTTSARGRGG 1450
1451 RAGAKRAESSASSASGWKSKKTGNSFGFDLMPLPGSK 1487

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.