| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9WUF3 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MAADDDNGDGTGLFDVCPASPLKNNDEGSLDIYAGLDSAVSDSTARSCVS 50
51 FRNCLDLYEEILTEEGTAKEATYNDLQIEYGKCQQQMKDLMKRFKEIQTQ 100
101 NLNLKNENQSLKKNISALIKTARVEINRKDEEINHLHQRLSEFPHFRNNH 150
151 KTARTKDSQSTSPHLDDCSKTDHGVKSDVQKDVHPNTAQPNLEKEGKSHS 200
201 EAQNPLHLSTGVEKHCANNVWSRSPYQVGEGNSNEDNRRGRSGTRHSQCS 250
251 RGTDRTQKDLHSSCNDSEPRDKEANSRLQGHPEKHGNSEARTESKISESK 300
301 SSTGMGYKSERSASSWEKETSRERPHTRVESQHDKNLEKQNERLQNMHRK 350
351 ELPSQDKTERKVDVKFKPAGEEQGHRGRVDRALPPHPKNDVKHYGFNKYH 400
401 PEERRGREDCKRDRGMNSHGFQDRRCSSFLSSNRNSKYPHSKEVSVAHQW 450
451 ENTPFKAERHRTEDRRKRERENKEESRHVKSDKKSPPEHLQRTHKDTKKS 500
501 TADGKRQTEPKHGKGAVSNSELSKGTDSKEGATKVESGPNEAKGKDLKLS 550
551 FMEKLNLTLSPAKKQPACQDNPHQITGVPEPSGTCDSRSLETTGTVACLP 600
601 SGSEHNREETKSELPEPKEALLATSQLRISIPENKMKEEKRLLFKSVENT 650
651 VPCELLACGTEISLPAPVEIEQARCLLGSVEVEETCGGARTAASVVMHVL 700
701 PEHASEDASQELDTKRHDGINACAISEGVKTKVILSPKAAAASESHLAPL 750
751 VEEPSISLVNCSGDNNPKLEPSLEERPIVETKSCPLESCLPKETFVPSPQ 800
801 KTELIDHKIETGESNSVYQDDDNSVLSIDFNNLRPIPDPISPLNSPVRPV 850
851 CKVVSMESSCAIPLYDSSHKDEFPSNSTLSTFKSQSDLNKENEKPVPKFD 900
901 KCSEADSCKHLSLDELEEGEIRSDDEESVAQKRLEKSARPRVSAEVQPGK 950
951 SSPGSRRSTVHVHKDNGRTAVKLPRDRLTWSKRSSESRPSNTERKSKTMS 1000
1001 ISSLEKILPLILVPSSLWEVMHMLRLLGKHVRKNYMKFKIKFSLTQFHRI 1050
1051 IESAILSFTSLVKCLDLSKICKSVSTLQKSLCEVIESNLKQVKKNGIVDR 1100
1101 LFEQQQTDMKKKLWKFVDEQLDYLFEKLKKILLKFCDSVNFENENSEGKL 1150
1151 GKKYKERTQHSNCQKKKMDNKEIRREKVLKSENTVNFKSSLGCEKSEEKH 1200
1201 QDQNKTNASIVKHDVKRTFSTCSDNTKNAECKEQFLEKSCPSTPRPGKDE 1250
1251 GHTEEEAQAAQHASAKSERSFEILTEQQASSLTFNLVSDAQMGEIFKSLL 1300
1301 QGSDLLDTSGTEKAEWELKTPEKQLLESLKCESAPACATEELVSEGASLC 1350
1351 PKVISDDNWSLLSSEKGPSLSSGLSLPVHPDVLDENCMFEVSSNTALGKD 1400
1401 NVYSSEKSKPCISSILLEDLAVSLTVPSPLKSDGHLSFLKPEVLSTSTPE 1450
1451 EVISAHFSEDALLEEEDASEQDIHLALESDNSSSKSSCSSWTSRSVASGF 1500
1501 QYHPNLPMHAVIMEKSNDHFIVKIRRATPSTSPGLKHGVVAEESLTSLPR 1550
1551 TGKEAGVATEKEPNLFQSTVLKPVKDLENTDKNIDKSKLTHEEQNSIVQT 1600
1601 QVPDIYEFLKDASNKVVHCDQVVDDCFKLHQVWEPKVSENLQELPSMEKI 1650
1651 PHSLDNHLPDTHIDLTKDSATETKSLGELMEVTVLNVDHLECSQTNLDQD 1700
1701 AEITCSSLQPDTIDAFIDLTHDASSESKNEGSEPVLAVEGMGCQVICIDE 1750
1751 DTNKEGKMGRANSPLESIVEETCIDLTSESPGSCEIKRHNLKSEPPSKLD 1800
1801 CLELPETLGNGHKKRKNSPGVSHSSQKKQRKDIDLSSEKTQRLSPNSDRN 1850
1851 GDAHRKQASKKREPAVNETSLSSEASPEVKGSTAVLAASPASLSAKNVIK 1900
1901 KKGEIIVSWTRNDDREILLECQKRMPSLKTFTYLAVKLNKNPNQVSERFQ 1950
1951 QLKKLFEKSKCR 1962
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.