SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9WUU9 from www.uniprot.org...

The NucPred score for your sequence is 0.94 (see score help below)

   1  MHPVNPFGGQQPSAFAVSSSTTGTYQTKSPFRFGQPSLFGQNSTPSKSLA    50
51 FSQVPSFATPSGGSHSSSLPAFGLTQTSSVGLFSSLESTPSFAATSSSSV 100
101 PGNTAFSFKSTSSVGVFPSGATFGPETGEVAGSGFRKTEFKFKPLENAVF 150
151 KPIPGPESEPEKTQSQISSGFFTFSHPVGSGSGGLTPFSFPQVTNSSVTS 200
201 SSFIFSKPVTSNTPAFASPLSNQNVEEEKRVSTSAFGSSNSSFSTFPTAS 250
251 PGSLGEPFPANKPSLRQGCEEAISQVEPLPTLMKGLKRKEDQDRSPRRHC 300
301 HEAAEDPDPLSRGDHPPDKRPVRLNRPRGGTLFGRTIQEVFKSNKEAGRL 350
351 GSKESKESGFAEPGESDHAAVPGGSQSTMVPSRLPAVTKEEEESRDEKED 400
401 SLRGKSVRQSKRREEWIYSLGGVSSLELTAIQCKNIPDYLNDRAILEKHF 450
451 SKIAKVQRVFTRRSKKLAVIHFFDHASAALARKKGKGLHKDVVIFWHKKK 500
501 ISPSKKLFPLKEKLGESEASQGIEDSPFQHSPLSKPIVRPAAGSLLSKSS 550
551 PVKKPSLLKMHQFEADPFDSGSEGSEGLGSCVSSLSTLIGTVADTSEEKY 600
601 RLLDQRDRIMRQARVKRTDLDKARAFVGTCPDMCPEKERYLRETRSQLSV 650
651 FEVVPGTDQVDHAAAVKEYSRSSADQEEPLPHELRPSAVLSRTMDYLVTQ 700
701 IMDQKEGSLRDWYDFVWNRTRGIRKDITQQHLCDPLTVSLIEKCTRFHIH 750
751 CAHFMCEEPMSSFDAKINNENMTKCLQSLKEMYQDLRNKGVFCASEAEFQ 800
801 GYNVLLNLNKGDILREVQQFHPDVRNSPEVNFAVQAFAALNSNNFVRFFK 850
851 LVQSASYLNACLLHCYFNQIRKDALRALNVAYTVSTQRSTVFPLDGVVRM 900
901 LLFRDSEEATNFLNYHGLTVADGCVELNRSAFLEPEGLCKARKSVFIGRK 950
951 LTVSVGEVVNGGPLPPVPRHTPVCSFNSQNKYVGESLATELPISTQRAGG 1000
1001 DPAGGGRGEDCEAEVDVPTLAVLPQPPPASSATPALHVQPLAPAAAPSLL 1050
1051 QASTQPEVLLPKPAPVYSDSDLVQVVDELIQEALQVDCEEVSSAGAAYVA 1100
1101 AALGVSNAAVEDLITAATTGILRHVAAEEVSMERQRLEEEKQRAEEERLK 1150
1151 QERELMLTQLSEGLAAELTELTVTECVWETCSQELQSAVEIDQKVRVARC 1200
1201 CEAVCAHLVDLFLAEEIFQTAKETLQELQCFCKYLQRWREAVAARKKFRR 1250
1251 QMRAFPAAPCCVDVNDRLQALVPSAECPITEENLAKGLLDLGHAGKVGVS 1300
1301 CTRLRRLRNKTAHQIKVQHFHQQLLRNAAWAPLDLPSIVSEHLPMKQKRR 1350
1351 FWKLVLVLPDVEEQTPESPGRILENWLKVKFTGDDSMVGDIGDNAGDIQT 1400
1401 LSVFNTLSSKGDQTVSVNVCIKVAHGTLSDSALDAVETQKDLLGTSGLML 1450
1451 LLPPKVKSEEVAEEELSWLSALLQLKQLLQAKPFQPALPLVVLVPSSRGD 1500
1501 SAGRAVEDGLMLQDLVSAKLISDYIVVEIPDSVNDLQGTVKVSGAVQWLI 1550
1551 SRCPQALDLCCQTLVQYVEDGISREFSRRFFHDRRERRLASLPSQEPSTI 1600
1601 IELFNSVLQFLASVVSSEQLCDISWPVMEFAEVGGSQLLPHLHWNSPEHL 1650
1651 AWLKQAVLGFQLPQMDLPPPGAPWLPVCSMVIQYTSQIPSSSQTQPVLQS 1700
1701 QVENLLCRTYQKWKNKSLSPGQELGPSVAEIPWDDIITLCINHKLRDWTP 1750
1751 PRLPVTLEALSEDGQICVYFFKNLLRKYHVPLSWEQARMQTQRELQLSHG 1800
1801 RSGMRSIHPPTSTFPTPLLHVHQKGKKKEESGREGSLSTEDLLRGASAEE 1850
1851 LLAQSLSSSLLEEKEENKRFEDQLQQWLSQDSQAFTESTRLPLYLPQTLV 1900
1901 SFPDSIKTQTMVKTSTSPQNSGTGKQLRFSEASGSSLTEKLKLLERLIQS 1950
1951 SRAEEAASELHLSALLEMVDM 1971

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.