 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9WV30 from www.uniprot.org...
The NucPred score for your sequence is 0.93 (see score help below)
1 MPSDFISLLSADLDLESPKSLYSRESVYDLLPKELQLPPPRETSVASMSQ 50
51 TSGGEAGSPPPAVVAADASSAPSSSSMGGACSSFTTSSSPTIYSTSVTDS 100
101 KAMQVESCSSAVGVSNRGVSEKQLTGNTVQQHPSTPKRHTVLYISPPPED 150
151 LLDNSRMSCQDEGCGLESEQSCSMWMEDSPSNFSNMSTSSYNDNTEVPRK 200
201 SRKRNPKQRPGVKRRDCEESNMDIFDADSAKAPHYVLSQLTTDNKGNSKA 250
251 GNGTLDSQKGTGVKKSPMLCGQYPVKSEGKELKIVVQPETQHRARYLTEG 300
301 SRGSVKDRTQQGFPTVKLEGHNEPVVLQVFVGNDSGRVKPHGFYQACRVT 350
351 GRNTTPCKEVDIEGTTVIEVGLDPSNNMTLAVDCVGILKLRNADVEARIG 400
401 IAGSKKKSTRARLVFRVNITRKDGSTLTLQTPSSPILCTQPAGVPEILKK 450
451 SLHSCSVKGEEEVFLIGKNFLKGTKVIFQENVSDENSWKSEAEIDMELFH 500
501 QNHLIVKVPPYHDQHITLPVSVGIYVVTNAGRSHDVQPFTYTPDPAAGAL 550
551 NVNVKKEISSPARPCSFEEAMKAMKTTGCNVDKVTILPNALITPLISSSM 600
601 IKTEDVTPMEVTSEKRSSPIFQTTKSIGSTQQTLETISNIAGGAPFSSPS 650
651 SSSHLTPESENQQQLQPKAYNPETLTTIQTQDISQPGTFPAVSAASQLPS 700
701 SDALLQQATQFQTREAQSRDTIQSDTVVNLSQLTEASQQQQSPLQEQAQT 750
751 LQQQIPSNIFPSPSSVSQLQSTIQQLQAGSFTGSAAGGRSGSVDLVQQVL 800
801 EAQQQLSSVLFSTPDGNENVQEQLNADIFQVSQIQNSVSPGMFSSAESAV 850
851 HTRPDNLLPGRADSVHQQTENTLSNQQQQQQQQQQVMESSAAMVMEMQQS 900
901 ICQAAAQIQSELFPSAASASGSLQQSPVYQQPSHMMSALPTNEDMQMQCE 950
951 LFSSPPAASGNETSTTTTPQVATPGSTMFQTPSSGDGEETGAQAKQIQNS 1000
1001 VFQTMVQMQRSGDSQPQVNLFSSTKNIMSVQNNGTQQQGNSLFQQGSEMM 1050
1051 SLQSGNFLQQSSHSQAQLFHPQNPIADAQNLSQETQGSIFHSPNPIVHSQ 1100
1101 TSTASSEQLQPSMFHSQNTIAVLQGSSVPQDQQSPNIFLSQSSINNLQTN 1150
1151 TVAQEEQISFFAAQNSISPLQSTSNTEQQAAFQQQPPISHIQTPILSQEQ 1200
1201 AQPSQQGLFQPQVALGSLPPNPMPQNQQGPIFQTQRPIVGMQSNSPSQEQ 1250
1251 QQQQQQQQQQQQQQQQQQQSILFSNQNAMATMASQKQPPPNMMFSPNQNP 1300
1301 MASQEQQNQSIFHQQSNMAPMNQEQQPMQFQNQPTVSSLQNPGPTQSESP 1350
1351 QTSLFHSSPQIQLVQGSPSSQDQQVTLFLSPASMSALQTSINQPDMQQSP 1400
1401 LYSPQNNIPGIQGSTSSPQPQATLFHNTTGGTINQIQNSPGSSQQTSGMF 1450
1451 LFGIQNNCSQLLTSGPATLPDQLMAINQQGQPQNEGQSSVTTLLSQQMPE 1500
1501 TSPLASSVNSSQNMEKIDLLVSLQSQGNNLTGSF 1534
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.