SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9WVB4 from www.uniprot.org...

The NucPred score for your sequence is 0.82 (see score help below)

   1  MALGRTGAGAAVRARLALGLALASILSGPPAAACPTKCTCSAASVDCHGL    50
51 GLRAVPRGIPRNAERLDLDRNNITRITKMDFAGLKNLRVLHLEDNQVSII 100
101 ERGAFQDLKQLERLRLNKNKLQVLPELLFQSTPKLTRLDLSENQIQGIPR 150
151 KAFRGVTGVKNLQLDNNHISCIEDGAFRALRDLEILTLNNNNISRILVTS 200
201 FNHMPKIRTLRLHSNHLYCDCHLAWLSDWLRQRRTIGQFTLCMAPVHLRG 250
251 FSVADVQKKEYVCPGPHSEAPACNANSLSCPSACSCSNNIVDCRGKGLTE 300
301 IPANLPEGIVEIRLEQNSIKSIPAGAFTQYKKLKRIDISKNQISDIAPDA 350
351 FQGLKSLTSLVLYGNKITEIPKGLFDGLVSLQLLLLNANKINCLRVNTFQ 400
401 DLQNLNLLSLYDNKLQTISKGLFVPLQSIQTLHLAQNPFVCDCHLKWLAD 450
451 YLQDNPIETSGARCSSPRRLANKRISQIKSKKFRCSGSEDYRNRFSSECF 500
501 MDLVCPEKCRCEGTIVDCSNQKLARIPSHLPEYTTDLRLNDNDISVLEAT 550
551 GIFKKLPNLRKINLSNNRIKEVREGAFDGAAGVQELMLTGNQLETMHGRM 600
601 FRGLSSLKTLMLRSNLISCVSNDTFAGLSSVRLLSLYDNRITTITPGAFT 650
651 TLVSLSTINLLSNPFNCNCHMAWLGRWLRKRRIVSGNPRCQKPFFLKEIP 700
701 IQDVAIQDFTCDGNEESSCQLSPRCPEQCTCVETVVRCSNRGLHALPKGM 750
751 PKDVTELYLEGNHLTAVPKELSAFRQLTLIDLSNNSISMLTNHTFSNMSH 800
801 LSTLILSYNRLRCIPVHAFNGLRSLRVLTLHGNDISSVPEGSFNDLTSLS 850
851 HLALGTNPLHCDCSLRWLSEWVKAGYKEPGIARCSSPESMADRLLLTTPT 900
901 HRFQCKGPVDINIVAKCNACLSSPCKNNGTCSQDPVEQYRCTCPYSYKGK 950
951 DCTVPINTCVQNPCEHGGTCHLSENLRDGFSCSCPLGFEGQRCEINPDDC 1000
1001 EDNDCENSATCVDGINNYACLCPPNYTGELCDEVIDYCVPEMNLCQHEAK 1050
1051 CISLDKGFRCECVPGYSGKLCETNNDDCVAHKCRHGAQCVDEVNGYTCIC 1100
1101 PQGFSGLFCEHPPPMVLLQTSPCDQYECQNGAQCIVVQQEPTCRCPPGFA 1150
1151 GPRCEKLITVNFVGKDSYVELASAKVRPQANISLQVATDKDNGILLYKGD 1200
1201 NDPLALELYQGHVRLVYDSLSSPPTTVYSVETVNDGQFHSVELVMLNQTL 1250
1251 NLVVDKGAPKSLGKLQKQPAVGSNSPLYLGGIPTSTGLSALRQGADRPLG 1300
1301 GFHGCIHEVRINNELQDFKALPPQSLGVSPGCKSCTVCRHGLCRSVEKDS 1350
1351 VVCECHPGWTGPLCDQEARDPCLGHSCRHGTCMATGDSYVCKCAEGYGGA 1400
1401 LCDQKNDSASACSAFKCHHGQCHISDRGEPYCLCQPGFSGHHCEQENPCM 1450
1451 GEIVREAIRRQKDYASCATASKVPIMECRGGCGSQCCQPIRSKRRKYVFQ 1500
1501 CTDGSSFVEEVERHLECGCRACS 1523

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.