SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9XPS9 from www.uniprot.org...

The NucPred score for your sequence is 0.92 (see score help below)

   1  MAERANLVFHNKEIDGTGMKRLISRLIDHFGMGYTSHILDQLKTLGFHQA    50
51 TTTSISLGIEDLLTIPSKGWLVQDAEQQSFLLEKHYYYGAVHAVEKLRQS 100
101 VEIWYATSEYLKQEMNSNFRITDPSNPVYLMSFSGARGNASQVHQLVGMR 150
151 GLMSDPQGQMIDLPIQSNLREGLSLTEYIISCYGARKGVVDTAVRTADAG 200
201 YLTRRLVEVVQHIIVRRRDCGTIRGISVSPQNGMTEKLFVQTLIGRVLAD 250
251 DIYIGSRCIAARNQDIGIGLVNRFITAFRAQPFRAQPIYIRTPFTCRSTS 300
301 WICQLCYGRSPTHSDLVELGEAVGIIAGQSIGEPGTQLTLRTFHTGGVFT 350
351 GGTADLVRSPSNGKIKFNENLVHPTRTRHGQPAFLCYIDLHVTIQSQDIL 400
401 YSVNIPSKSLILVQNDQYVKSEQVIAEIRAGTSTLHFKERVQKHIYSESD 450
451 GEMHWSTDVYHAPEYQYGNLRRLPKTSHLWILSVSMCRSSIASFSLHKDQ 500
501 DQMNTYGKKDREILDYSTSDRIMSNGHWNFIYPSIFQDNSDLLAKKRRNR 550
551 FVIPLQYHQEQEKELISCFGISIEIPLMGVLRRNTIFAYFDDPRYRKDKK 600
601 GSGIVKFRYRTLEEEYRTRAEDSEEEYETLEDEYRTREDEYEYETLEESK 650
651 YGILEDEYEYETLEDEYGSPENEYGNPENEYRTLEKDSEEEYGSPESKYR 700
701 TQEDEYGTIEEDSEDEYGSPGESAEEKYGTLEEDSEEDSEDEYESPEEDS 750
751 ILKKEGLIEHRGTKEFSLKYQKEVDRFFFILQELHILPRSSSLKILDNSI 800
801 IGVDTQLTKNTRSRLGGLVRVKRKKSHTELKIFSGDIHFPEEADKILGGC 850
851 LIPPERQKKDSKESKKRKNWVYVQRKKILKSKEKYFVSVRPTVAYEMDEG 900
901 RNLATLFPQDLLQEENNLQIRLVNFISHENSKLTQRIYHTNSQFVRTCLV 950
951 VNWEQEEKEKAGASLVEVRANDLIRDFLRIELVKSTISYTRKRYDRTSAG 1000
1001 PIPHNRLDRANINSFYSKAKIESLSQHPEAIGTLLNRNKEYHSLMILSAS 1050
1051 NCSRIGLFKNSKHPNAIKEWNPRIPIREIFGPLGAIVASISHFSSSYYLL 1100
1101 THNKILLKKYLFVDNLKQTFQVLQELKYSLIDENKRISNFDSNIMLDPFL 1150
1151 LNCHFVHHDSWEETLAIIHLGQFICENVCLFKSHIKKSGQIFIVNMNSFV 1200
1201 IRAAKPYLATTGATVNGHYGEILYKGDRLVTFIYEKSRSSDITQGLPKVE 1250
1251 QIFEARSIDSLSPNLERRIEDWNERIPRILGVPWGFLIGAELTIAQSRIS 1300
1301 LVNKIQKVYRSQGVQIHNRHIEIIIRQVTSKVRVSEDGMSNVFSPGELIG 1350
1351 LLRAERAGRALDESIYYRAILLGITRASLNTQSFISEASFQETARVLAKA 1400
1401 ALRGRIDWLKGLKENVVLGGIIPVGTGFQKFVHRSPQDKNLYFEIKKKNL 1450
1451 FASEMRDFLFLHTELVSSDSDVTNNFYET 1479

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.