 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9Y2A5 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MTDRFWDQWYLWYLRLLRLLDRGSFRNDGLKASDVLPILKEKVAFVSGGR 50
51 DKRGGPILTFPARSNHDRIRQEDLRKLVTYLASVPSEDVCKRGFTVIIDM 100
101 RGSKWDLIKPLLKTLQEAFPAEIHVALIIKPDNFWQKQKTNFGSSKFIFE 150
151 TSMVSVEGLTKLVDPSQLTEEFDGSLDYNHEEWIELRLSLEEFFNSAVHL 200
201 LSRLEDLQEMLARKEFPVDVEGSRRLIDEHTQLKKKVLKAPVEELDREGQ 250
251 RLLQCIRCSDGFSGRNCIPGSADFQSLVPKITSLLDKLHSTRQHLHQMWH 300
301 VRKLKLDQCFQLRLFEQDAEKMFDWISHNKELFLQSHTEIGVSYQYALDL 350
351 QTQHNHFAMNSMNAYVNINRIMSVASRLSEAGHYASQQIKQISTQLDQEW 400
401 KSFAAALDERSTILAMSAVFHQKAEQFLSGVDAWCKMCSEGGLPSEMQDL 450
451 ELAIHHHQTLYEQVTQAYTEVSQDGKALLDVLQRPLSPGNSESLTATANY 500
501 SKAVHQVLDVVHEVLHHQRRLESIWQHRKVRLHQRLQLCVFQQDVQQVLD 550
551 WIENHGEAFLSKHTGVGKSLHRARALQKRHDDFEEVAQNTYTNADKLLEA 600
601 AEQLAQTGECDPEEIYKAARHLEVRIQDFVRRVEQRKLLLDMSVSFHTHT 650
651 KELWTWMEDLQKEMLEDVCADSVDAVQELIKQFQQQQTATLDATLNVIKE 700
701 GEDLIQQLRSAPPSLGEPSEARDSAVSNNKTPHSSSISHIESVLQQLDDA 750
751 QVQMEELFHERKIKLDIFLQLRIFEQYTIEVTAELDAWNEDLLRQMNDFN 800
801 TEDLTLAEQRLQRHTERKLAMNNMTFEVIQQGQDLHQYITEVQASGIELI 850
851 CEKDIDLAAQVQELLEFLHEKQHELELNAEQTHKRLEQCLQLRHLQAEVK 900
901 QVLGWIRNGESMLNASLVNASSLSEAEQLQREHEQFQLAIESLFHATSLQ 950
951 KTHQSALQVQQKAEVLLQAGHYDADAIRECAEKVALHWQQLMLKMEDRLK 1000
1001 LVNASVAFYKTSEQVCSVLESLEQEYRRDEDWCGGRDKLGPAAEIDHVIP 1050
1051 LISKHLEQKEAFLKACTLARRNAEVFLKYIHRNNVSMPSVASHTRGPEQQ 1100
1101 VKAILSELLQRENRVLHFWTLKKRRLDQCQQYVVFERSAKQALDWIQETG 1150
1151 EFYLSTHTSTGETTEETQELLKEYGEFRVPAKQTKEKVKLLIQLADSFVE 1200
1201 KGHIHATEIRKWVTTVDKHYRDFSLRMGKYRYSLEKALGVNTEDNKDLEL 1250
1251 DIIPASLSDREVKLRDANHEVNEEKRKSARKKEFIMAELLQTEKAYVRDL 1300
1301 HECLETYLWEMTSGVEEIPPGILNKEHIIFGNIQEIYDFHNNIFLKELEK 1350
1351 YEQLPEDVGHCFVTWADKFQMYVTYCKNKPDSNQLILEHAGTFFDEIQQR 1400
1401 HGLANSISSYLIKPVQRITKYQLLLKELLTCCEEGKGELKDGLEVMLSVP 1450
1451 KKANDAMHVSMLEGFDENLDVQGELILQDAFQVWDPKSLIRKGRERHLFL 1500
1501 FEISLVFSKEIKDSSGHTKYVYKNKLLTSELGVTEHVEGDPCKFALWSGR 1550
1551 TPSSDNKTVLKASNIETKQEWIKNIREVIQERIIHLKGALKEPLQLPKTP 1600
1601 AKQRNNSKRDGVEDIDSQGDGSSQPDTISIASRTSQNTVDSDKLSGGCEL 1650
1651 TVVLQDFSAGHSSELTIQVGQTVELLERPSERPGWCLVRTTERSPPLEGL 1700
1701 VPSSALCISHSRSSVEMDCFFPLVKDAYSHSSSENGGKSESVANLQAQPS 1750
1751 LNSIHSSPGPKRSTNTLKKWLTSPVRRLNSGKADGNIKKQKKVRDGRKSF 1800
1801 DLGSPKPGDETTPQGDSADEKSKKGWGEDEPDEESHTPLPPPMKIFDNDP 1850
1851 TQDEMSSSLLAARQASTEVPTAADLVNAIEKLVKNKLSLEGSSYRGSLKD 1900
1901 PAGCLNEGMAPPTPPKNPEEEQKAKALRGRMFVLNELVQTEKDYVKDLGI 1950
1951 VVEGFMKRIEEKGVPEDMRGKDKIVFGNIHQIYDWHKDFFLAELEKCIQE 2000
2001 QDRLAQLFIKHERKLHIYVWYCQNKPRSEYIVAEYDAYFEEVKQEINQRL 2050
2051 TLSDFLIKPIQRITKYQLLLKDFLRYSEKAGLECSDIEKAVELMCLVPKR 2100
2101 CNDMMNLGRLQGFEGTLTAQGKLLQQDTFYVIELDAGMQSRTKERRVFLF 2150
2151 EQIVIFSELLRKGSLTPGYMFKRSIKMNYLVLEENVDNDPCKFALMNRET 2200
2201 SERVVLQAANADIQQAWVQDINQVLETQRDFLNALQSPIEYQRKERSTAV 2250
2251 MRSQPARLPQASPRPYSSVPAGSEKPPKGSSYNPPLPPLKISTSNGSPGF 2300
2301 EYHQPGDKFEASKQNDLGGCNGTSSMAVIKDYYALKENEICVSQGEVVQV 2350
2351 LAVNQQNMCLVYQPASDHSPAAEGWVPGSILAPLTKATAAESSDGSIKKS 2400
2401 CSWHTLRMRKRAEVENTGKNEATGPRKPKDILGNKVSVKETNSSEESECD 2450
2451 DLDPNTSMEILNPNFIQEVAPEFLVPLVDVTCLLGDTVILQCKVCGRPKP 2500
2501 TITWKGPDQNILDTDNSSATYTVSSCDSGEITLKICNLMPQDSGIYTCIA 2550
2551 TNDHGTTSTSATVKVQGVPAAPNRPIAQERSCTSVILRWLPPSSTGNCTI 2600
2601 SGYTVEYREEGSQIWQQSVASTLDTYLVIEDLSPGCPYQFRVSASNPWGI 2650
2651 SLPSEPSEFVRLPEYDAAADGATISWKENFDSAYTELNEIGRGRFSIVKK 2700
2701 CIHKATRKDVAVKFVSKKMKKKEQAAHEAALLQHLQHPQYITLHDTYESP 2750
2751 TSYILILELMDDGRLLDYLMNHDELMEEKVAFYIRDIMEALQYLHNCRVA 2800
2801 HLDIKPENLLIDLRIPVPRVKLIDLEDAVQISGHFHIHHLLGNPEFAAPE 2850
2851 VIQGIPVSLGTDIWSIGVLTYVMLSGVSPFLDESKEETCINVCRVDFSFP 2900
2901 HEYFCGVSNAARDFINVILQEDFRRRPTAATCLQHPWLQPHNGSYSKIPL 2950
2951 DTSRLACFIERRKHQNDVRPIPNVKSYIVNRVNQGT 2986
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.