 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9Y485 from www.uniprot.org...
The NucPred score for your sequence is 0.85 (see score help below)
1 MNLHQVLTGAVNPGDHCFSVGSIGDQRFTAYASGCDIVILGSDFERLQII 50
51 PGAKHGNIQVGCVDCSMQQGKIAASYGNVISIFEPVNLPKQKKNLELYSQ 100
101 WQKSGQFFLESIAHNITWDPTGSRLLTGSSYLQLWSNTNLEKPTEDENLN 150
151 KTDLNFGDWKCIWHCKTASQVHLMKFSPDGEFFATAGKDDCLLKVWYNVE 200
201 NWRTAVTSPDGSSEKQSQGEIDFSFVYLAHPRAVNGFSWRKTSKYMPRAS 250
251 VCNVLLTCCKDNVCRLWVETFLPNDCLLYGGDCSHWTESINLTNNFKRNA 300
301 SSKERVQNALEVNLRHFRRGRRRSLALVAHTGYLPHQQDPHHVHRNTPLH 350
351 ANALCHFHIAASINPATDIPLLPSITSLSLNENEEKTGPFVVHWLNNKEL 400
401 HFTLSMEVFLQQLRKSFEQPSSEASVEDSNQADVKSDEETDDGVDDLKIN 450
451 PEKKELGCDKMVPNSSFTSLSSAAIDHQIEVLLSEWSKNADMLFSIHPMD 500
501 GSLLVWHVDWLDEYQPGMFRQVQVSFVSRIPVAFPTGDANSLCKSIMMYA 550
551 CTKNVDLAIQQGKQKPSGLTRSTSMLISSGHNKSSNSLKLSIFTPNVMMI 600
601 SKHADGSLNQWLVSFAEESAFSTVLSISHKSRYCGHRFHLNDLACHSVLP 650
651 LLLTTSHHNALRTPDVDNPEQPFDALNIEECSLTQQNKSTVDVAFQDPSA 700
701 VYSELILWRVDPVGPLSFSGGVSELARINSLHVSAFSNVAWLPTLIPSYC 750
751 LGAYCNSPSACFVASDGQYLRLYEAVIDAKKLLSELSNPEISKYVGEVFN 800
801 IVSQQSTARPGCIIALDPITKLHGRKTQLLHVFEEDFILNNLEKKSLGKD 850
851 SILSNAGSSPNGFSEKFYLIVIECTQDNRSLLHMWNLHLKSIPVSLDEKV 900
901 DTKLSEAVWQPEEHYSSSPEKILSPFSQKYQACRANLQSTSRLTLFSEMV 950
951 YSQELHLPEGVEIISIKPSAGHLSSSSIYPACSAPYLLATSCSDEKVRFW 1000
1001 RCRVTDGESATSKNGKIDLAYIWEEWPLLIEDGLQSNSSITVPGRPVEVS 1050
1051 CAHTNRLAVAYKQPASNSRSSQDFVMHVSIFECESTGGSCWVLEQTIHLD 1100
1101 ELSTVLDSGISVDSNLVAYNKQDMYLSSKENITSNTKHLVHLDWMSREDG 1150
1151 SHILTVGIGSKLFMYGPLAGKVQDQTGKETLAFPLWESTKVVPLSKFVLL 1200
1201 RSVDLVSSVDGSPPFPVSLSWVRDGILVVGMDCEMHVYCQWQPSSKQEPV 1250
1251 ITDSYSGSTPSITSLIKQSNSSSGLHPPKKTLTRSMTSLAQKICGKKTAF 1300
1301 DPSVDMEDSGLFEAAHVLSPTLPQYHPLQLLELMDLGKVRRAKAILSHLV 1350
1351 KCIAGEVVALNEAESNHERRLRSLTISASGSTTRDPQAFNKAENTDYTEI 1400
1401 DSVPPLPLYALLAADDDSCYSSLEKSSNESTLSKSNQLSKESYDELFQTQ 1450
1451 LLMTDTHMLETDEENTKPRVIDLSQYSPTYFGPEHAQVLSGHLLHSSLPG 1500
1501 LSRMEQMSLMALADTIATTSTDIGESRDRSQGGETLDECGLKFLLAVRLH 1550
1551 TFLTTSLPAYRAQLLHQGLSTSHFAWAFHSVAEEELLNMLPAMQKDDPTW 1600
1601 SELRAMGVGWWVRNTRILRKCIEKVAKAAFYRKNDPLDAAIFYLAMKKKA 1650
1651 VIWGLYRAEKNTRMTQFFGHNFEDERWRKAALKNAFSLLGKQRFEHSAAF 1700
1701 FLLAGCLRDAIEVCLEKLNDIQLALVIARLYESEFDTSAAYKSILRKKVL 1750
1751 GIDSPVSELCSLNINMHHDPFLRSMAYWILEDYSGALETLIKQPIRENDD 1800
1801 QVLSASNPTVFNFYNYLRTHPLLLRRHFGSSDTFSTHMSLTGKSGLAGTI 1850
1851 NLSERRLFFTTASAHLKAGCPMLALEVLSKMPKVIKKTRPFYRASSFLDT 1900
1901 SKDCSPSSPLKLDAREDKSSAVDWSQSLINGFGSSSEGSSEKQSNSTLSF 1950
1951 DWSQPSVVFQDDSLELKWDSDNDEENEDVPISMKELKPLQRKTDKKLDDI 2000
2001 SSNYTESFSTLDENDLLNPSEDIIAVQLKFRACLKILTVELRTLSTGYEI 2050
2051 DGGKLRYQLYHWLEKEVIALQRTCDFCSDAEELQSAFGRNEDEFGLNEDA 2100
2101 EDLPHQTKVKQLRENFQEKRQWLLKYQSLLRMFLSYCILHGSHGGGLASV 2150
2151 RMELILLLQESQQETSEPLFSSPLSEQTSVPLLFACTANAKTVVANPLLH 2200
2201 LSNLTHDILHAIINFDSPPHPDIQSNKVYVMHTLAASLSACIYQCLCGSH 2250
2251 NYSSFQTNQFTGMVYQTVLLPHRPSLKTGSLDEALTPNTSPAQWPGITCL 2300
2301 IRLLNSSGEEAQSGLTVLLCEILTAVYLSLFIHGLATHSSNELFRIVAHP 2350
2351 LNEKMWSAVFGGGAHVPSKEQTHSKTLPVSSLVEEGEKQNKRFRPSKMSC 2400
2401 RESAPLTPSSAPVSQESLAVKEKFIPPELSIWDYFIAKPFLPSSQSRAEY 2450
2451 DSEESLGSDDDDNDDDDDVLASDFHLQEHSNSNSYSWSLMRLAMVQLVLN 2500
2501 NLKTFYPFAGHDLAELPVSSPLCHAVLKTLQCWEQVLLRRLEIHGGPPQN 2550
2551 YIASHTAEESLSAGPAILRHKALLEPTNTPFKSKHHLALSVKRLWQYLVK 2600
2601 QEEIQETFIKNIFTKKRCLNEIEADLGYPGGKARIIHKESDIITAFAVNK 2650
2651 ANRNCIAIASSHDVQELDVSGILATQVYTWVDDDIEVETKGSEDFLVIHA 2700
2701 RDDLTAVQGTTPYTHSNPGTPINMPWLGSTQTGRGASVMIKKAINNVRRM 2750
2751 TSHPTLPYYLTGAQDGSVRMFEWGHSQQITCFRSGGNSRVTRMRFNYQGN 2800
2801 KFGIVDADGYLSLYQTNWKCCPVTGSMPKPYLTWQCHNKTANDFVFVSSS 2850
2851 SLIATAGLSTDNRNVCLWDTLVAPANSLVHAFTCHDSGATVLAYAPKHQL 2900
2901 LISGGRKGFTYVFDLCQRQQRQLFQSHDSPVKAVAVDPTEEYFVTGSAEG 2950
2951 NIKIWSLSTFGLLHTFVSEHARQSIFRNIGTGVMQIETGPANHIFSCGAD 3000
3001 GTMKMRILPDQFSPLNEVLKNDVKFML 3027
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.