| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q9Y623 from www.uniprot.org...
The NucPred score for your sequence is 0.95 (see score help below)
1 MSSDSEMAIFGEAAPFLRKSEKERIEAQNKPFDAKTSVFVVDPKESYVKA 50
51 IVQSREGGKVTAKTEAGATVTVKEDQVFSMNPPKYDKIEDMAMMTHLHEP 100
101 AVLYNLKERYAAWMIYTYSGLFCVTVNPYKWLPVYNPEVVTAYRGKKRQE 150
151 APPHIFSISDNAYQFMLTDRENQSILITGESGAGKTVNTKRVIQYFATIA 200
201 VTGEKKKEEPASGKMQGTLEDQIISANPLLEAFGNAKTVRNDNSSRFGKF 250
251 IRIHFGATGKLASADIETYLLEKSRVTFQLKAERSYHIFYQILSNKKPEL 300
301 IEMLLITTNPYDFAFVSQGEITVPSIDDQEELMATDSAVDILGFTADEKV 350
351 AIYKLTGAVMHYGNMKFKQKQREEQAEPDGTEVADKAAYLTSLNSADLLK 400
401 SLCYPRVKVGNEFVTKGQTVQQVYNAVGALAKAIYEKMFLWMVTRINQQL 450
451 DTKQPRQYFIGVLDIAGFEIFDFNSLEQLCINFTNEKLQQFFNHHMFVLE 500
501 QEEYKKEGIEWEFIDFGMDLAACIELIEKPMGIFSILEEECMFPKATDTS 550
551 FKNKLYEQHLGKSNNFQKPKPAKGKPEAHFSLVHYAGTVDYNIAGWLDKN 600
601 KDPLNETVVGLYQKSAMKTLAFLFSGAQTAEAEGGGGKKGGKKKGSSFQT 650
651 VSALFRENLNKLMTNLRSTHPHFVRCIIPNETKTPGAMEHELVLHQLRCN 700
701 GVLEGIRICRKGFPSRILYADFKQRYKVLNASAIPEGQFIDSKKASEKLL 750
751 GSIEIDHTQYKFGHTKVFFKAGLLGTLEEMRDEKLAQLITRTQAICRGFL 800
801 MRVEFRKMMERRESIFCIQYNIRAFMNVKHWPWMKLYFKIKPLLKSAETE 850
851 KEMANMKEEFEKTKEELAKTEAKRKELEEKMVTLMQEKNDLQLQVQAEAD 900
901 ALADAEERCDQLIKTKIQLEAKIKEVTERAEDEEEINAELTAKKRKLEDE 950
951 CSELKKDIDDLELTLAKVEKEKHATENKVKNLTEEMAGLDETIAKLTKEK 1000
1001 KALQEAHQQTLDDLQMEEDKVNTLTKAKTKLEQQVDDLEGSLEQEKKLCM 1050
1051 DLERAKRKLEGDLKLAQESTMDTENDKQQLNEKLKKKEFEMSNLQGKIED 1100
1101 EQALAIQLQKKIKELQARIEELEEEIEAERASRAKAEKQRSDLSRELEEI 1150
1151 SERLEEAGGATSAQIEMNKKREAEFQKMRRDLEESTLQHEATAAALRKKH 1200
1201 ADSVAELGEQIDSLQRVKQKLEKEKSELKMEINDLASNMETVSKAKANFE 1250
1251 KMCRTLEDQLSEIKTKEEEQQRLINELSAQKARLHTESGEFSRQLDEKDA 1300
1301 MVSQLSRGKQAFTQQIEELKRQLEEETKAKSTLAHALQSARHDCDLLREQ 1350
1351 YEEEQEAKAELQRGMSKANSEVAQWRTKYETDAIQRTEELEEAKKKLAQR 1400
1401 LQDAEEHVEAVNSKCASLEKTKQRLQNEVEDLMIDVERSNAACIALDKKQ 1450
1451 RNFDKVLAEWKQKYEETQAELEASQKESRSLSTELFKVKNAYEESLDHLE 1500
1501 TLKRENKNLQQEISDLTEQIAEGGKHIHELEKVKKQLDHEKSELQTSLEE 1550
1551 AEASLEHEEGKILRIQLELNQVKSEIDRKIAEKDEELDQLKRNHLRVVES 1600
1601 MQSTLDAEIRSRNDALRIKKKMEGDLNEMEIQLNHANRQAAEALRNLRNT 1650
1651 QGILKDTQLHLDDAIRGQDDLKEQLAMVERRANLMQAEVEELRASLERTE 1700
1701 RGRKMAEQELLDASERVQLLHTQNTSLINTKKKLETDISQIQGEMEDIVQ 1750
1751 EARNAEEKAKKAITDAAMMAEELKKEQDTSAHLERMKKNMEQTVKDLQLR 1800
1801 LDEAEQLALKGGKKQIQKLEARVRELESEVESEQKHNVEAVKGLRKHERR 1850
1851 VKELTYQTEEDRKNILRLQDLVDKLQTKVKAYKRQAEEAEEQSNVNLAKF 1900
1901 RKLQHELEEAKERADIAESQVNKLRVKSREVHTKVISEE 1939
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.