  |  Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. | 
NucPred
Fetching  Q9Y6X0  from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
   1  MESRETLSSSRQRGGESDFLPVSSAKPPAAPGCAGEPLLSTPGPGKGIPV    50
  51  GGERMEPEEEDELGSGRDVDSNSNADSEKWVAGDGLEEQEFSIKEANFTE   100
 101  GSLKLKIQTTKRAKKPPKNLENYICPPEIKITIKQSGDQKVSRAGKNSKA   150
 151  TKEEERSHSKKKLLTASDLAASDLKGFQPQAYERPQKHSTLHYDTGLPQD   200
 201  FTGDTLKPKHQQKSSSQNHMDWSTNSDSGPVTQNCFISPESGRETASTSK   250
 251  IPALEPVASFAKAQGKKGSAGNTWSQLSNNNKDLLLGGVAPSPSSHSSPA   300
 301  PPSSSAECNGLQPLVDQDGGGTKEPPEPPTVGSKKKSSKKDVISQTIPNP   350
 351  DLDWVKNAQKAFDNTEGKREGYSADSAQEASPARQNVSSASNPENDSSHV   400
 401  RITIPIKAPSLDPTNHKRKKRQSIKAVVEKIMPEKALASGITMSSEVVNR   450
 451  ILSNSEGNKKDPRVPKLSKMIENESPSVGLETGGNAEKVIPGGVSKPRKP   500
 501  PMVMTPPTCTDHSPSRKLPEIQHPKFAAKRRWTCSKPKPSTMLREAVMAT   550
 551  SDKLMLEPPSAYPITPSSPLYTNTDSLTVITPVKKKRGRPKKQPLLTVET   600
 601  IHEGTSTSPVSPISREFPGTKKRKRRRNLAKLAQLVPGEDKPMSEMKFHK   650
 651  KVGKLGVLDKKTIKTINKMKTLKRKNILNQILSCSSSVALKAKAPPETSP   700
 701  GAAAIESKLGKQINVSKRGTIYIGKKRGRKPRAELPPPSEEPKTAIKHPR   750
 751  PVSSQPDVPAVPSNFQSLVASSPAAMHPLSTQLGGSNGNLSPASTETNFS   800
 801  ELKTMPNLQPISALPTKTQKGIHSGTWKLSPPRLMANSPSHLCEIGSLKE   850
 851  ITLSPVSESHSEETIPSDSGIGTDNNSTSDQAEKSSESRRRYSFDFCSLD   900
 901  NPEAIPSDTSTKNRHGHRQKHLIVDNFLAHESLKKPKHKRKRKSLQNRDD   950
 951  LQFLADLEELITKFQVFRISHRSYTFYHENPYPSIFRINFDHYYPVPYIQ  1000
1001  YDPLLYLRRTSDLKSKKKRGRPAKTNDTMTKVPFLQGFSYPIPSGSYYAP  1050
1051  YGMPYTSMPMMNLGYYGQYPAPLYLSHTLGAASPFMRPTVPPPQFHTNSH  1100
1101  VKMSGAAKHKAKHGVHLQGPVSMGLGDMQPSLNPPKVGSASLSSGRLHKR  1150
1151  KHKHKHKHKEDRILGTHDNLSGLFAGKATGFSSHILSERLSSADKELPLV  1200
1201  SEKNKHKEKQKHQHSEAGHKASKNNFEVDTLSTLSLSDAQHWTQAKEKGD  1250
1251  LSSEPVDSCTKRYSGSGGDGGSTRSENLDVFSEMNPSNDKWDSDVSGSKR  1300
1301  RSYEGFGTYREKDIQAFKMNRKERSSYDSSMSPGMPSPHLKVDQTAVHSK  1350
1351  NEGSVPTMMTRKKPAAVDSVTIPPAPVLSLLAASAATSDAVGSSLKKRFK  1400
1401  RREIEAIQCEVRKMCNYTKILSTKKNLDHVNKILKAKRLQRQSKTGNNFV  1450
1451  KKRRGRPRKQPTQFDEDSRDQMPVLEKCIDLPSKRGQKPSLSPLVLEPAA  1500
1501  SQDTIMATIEAVIHMAREAPPLPPPPPPPLPPPPPPPLPPPPPLPKTPRG  1550
1551  GKRKHKPQAPAQPPQQSPPQQPLPQEEEVKAKRQRKSRGSESEVLP      1596
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold.  Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus.  Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them).  The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation).  Another benchmark is available in the Bioinformatics 2007 paper. | 
| NucPred score threshold |  Specificity |  Sensitivity | 
 | see above |  fraction of proteins predicted to be nuclear that actually are nuclear |  fraction of true nuclear proteins that are predicted (coverage) | 
 | 0.10 |  0.45 |  0.88 | 
 | 0.20 |  0.52 |  0.83 | 
 | 0.30 |  0.57 |  0.77 | 
 | 0.40 |  0.63 |  0.69 | 
 | 0.50 |  0.70 |  0.62 | 
 | 0.60 |  0.71 |  0.53 | 
 | 0.70 |  0.81 |  0.44 | 
 | 0.80 |  0.84 |  0.32 | 
 | 0.90 |  0.88 |  0.21 | 
 | 1.00 |  1.00 |  0.02 | 
| Sequences which score >= 0.8 with NucPred and which
                are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%.  (PredictNLS by itself is 87% correct with 26% coverage on the same data.) | 
Go back to the NucPred Home Page.