SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q9Z277 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MAPLLGRKPFPLVKPLPGEEPLFTIPHTQEAFRTREEYEARLERYSERIW    50
51 TCKSTGSSQLTHKEAWEEEQEVAELLKEEFPNWYEKLVLEMVHHNTASLE 100
101 KLVDSAWLEIMTKYAVGEECDFEVGKEKMLKVKIVKIHPLEKVDEEAVEK 150
151 KSDGACDSPSSDKENSSQMAQDLQKKETVVKEDEGRRESINDRARRSPRK 200
201 LPTSLKKGERKWAPPKFLPHKYDVKLQNEDKIISNVPADSLIRTERPPNK 250
251 EILRYFIRHNALRAGTGENAPWVVEDELVKKYSLPSKFSDFLLDPYKYMT 300
301 LNPSTKRRNTGSPDRKPSKKPKRDSSSLSSPLNPKLWCHVHLEKSLNGPP 350
351 LKVKNSKNSKSPEEHLEGVMKIMSPNNNKLHSFHIPKKGPAAKKPGKHSD 400
401 KPLKAKGRGKGILNGQKSTGNSKSPSKCVKTPKTKMKQMTLLDMAKGTQK 450
451 MTRTPRSSGGVPRSSGKPHKHLPPAALHLIAYYKENKDKEDKKSALSCVI 500
501 SKTARLLSNEDRARLPEELRALVQKRYELLEHKKRWASMSEEQRKEYLKK 550
551 KRQELKERLREKAKERREREMLERLEKQKRFEDQELGGRNLPAFRLVDTP 600
601 EGLPNTLFGDVALVVEFLSCYSGLLLPDAQYPITAVSLMEALSADKGGFL 650
651 YLNRVLVILLQTLLQDEIAEDYGELGMKLSEIPLTLHSVSELVRLCLRRC 700
701 DVQEDSEGSETDDNKDSTPFEDNEVQDEFLEKLETSEFFELTSEEKLRIL 750
751 TALCHRILMTYSVQDHMETRQQVSAELWKERLAVLKEENDKKRAEKQKRK 800
801 EMEARNKENGKEENVLGKVDRKKEIVKIEQQVEVEADDMISAVKSRRLLS 850
851 MQAKRKREIQERETKVRLEREAEEERMRKHKAAAEKAFQEGIAKAKLVLR 900
901 RTPIGTDRNHNRYWLFSNEVPGLFIEKGWVHNSIDYRFKHHRKDHSNLPD 950
951 DDYCPRSKKANLGKNASVNAHHGPALEAVETTVPKQGQNLWFLCDSQKEL 1000
1001 DELLSCLHPQGIRESQLKERLEKRYQEITHSIYLARKPNLGLKSCDGNQE 1050
1051 LLNFLRSDLIEVATRLQKGGLGYMEGTSEFEARVISLEKLKDFGECVIAL 1100
1101 QASVIKKFLQGFMAPKQKKRKLQSEDSTKSEEVDEEKKMVEEAKVASALE 1150
1151 KWKTAIREAQTFSRMHVLLGMLDACIKWDMSAENARCKVCRKKGEDDKLI 1200
1201 LCDECNKAFHLFCLRPALYEVPDGEWQCPACQPPTARRNSRGRNYTEEST 1250
1251 SEGSEGDESGEEEEEEEEEEEEEEDYEVAGLRLRPRKTIRGKQSVIPAAR 1300
1301 PGRPPGKKSHPARRSRPKDDPEVDDLVLQTKRISRRQSLELQKCEDILHK 1350
1351 LVKYRFSWPFREPVTRDEAEDYYDVIEHPMDFQTIQNKCSCGNYRSVQEF 1400
1401 LTDMKQVFANAELYNCRGSHVLSCMEKTEQCLLALLQKHLPGHPYVRRKR 1450
1451 RKFPDRLADDEGDSDSESVGQSRGRRQKK 1479

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.