
Evolving Perl code for protein secondary structure prediction.

Robert M. MacCallum
Stockholm Bioinformatics Center, Stockholm University, 106 91 Sweden

1 Introduction & Summary

Progress in the area of secondary structure pre-
diction has been frustratingly slow[6]. The most
accurate predictors at the moment are trained to
predict one of three secondary structural states
(helix, strand or coil) for each residue at position
i using sequence information from a “window”
of residues i ± 7. Information from more dis-
tant sequence positions should improve predic-
tions further, since it is assumed that non-local
interactions, like those that occur in sheet forma-
tion, can modulate the innate secondary struc-
ture preferences of a residue and its near neigh-
bours. However, simply using a larger window
does not help. First, the information content de-
creases rapidly as one moves away from i; be-
cause the likelihood that these residues are close
in 3D space is also diminishing. Second, there
is the problem of a using a fixed window to cap-
ture information from variable length secondary
structures.

Recently, attempts have been made to incorpo-
rate non-local information in secondary structure
predictions. Baldi and coworkers[5] have used
recurrent multi-pass neural networks and have
shown that information from residues i±15 influ-
ences their predictions. Bystroff and coworkers[2]
have taken another approach, which is to com-
bine local predictors for secondary and super-
secondary structures into a single large hidden
Markov model which simultaneously takes into
account context effects throughout the sequence.
The more successful ab initio 3D predictors, such
as Rosetta[1], may also have the side effect of pro-
ducing more accurate secondary structure pre-
dictions. Unfortunately, these three approaches
have not yet been shown to be superior to the
established predictors in terms of percent pre-
dicted correctly into helix, strand or coil (Q3).
The best Q3 currently stands at around 76%[4],
and any future improvement on this will be a
strong indicator of the successful incorporation
of long-range and/or folding information into the
predictors.

This paper describes another attempt to in-
crease secondary structure prediction accuracy
using long-range information. The main assump-

tion made in this work is that some form of com-
puter program exists, at least in theory, which
can do this. Such a program might mimic the
folding dynamics in some way, perhaps in one,
two or three dimensions using a reduced complex-
ity model. For example, a predictor could have
a simple rule: “predict weak-strand-region as

strand if number-of-already-assigned-strands ≥
2”. This rule could, for example, be applied af-
ter assigning “strong-strand-regions”, but before
assigning regions with helical sequence patterns.
The rationale here is that strands might be more
likely to form in the context of an already form-
ing sheet.

Why has such a computer program not already
been written? Attempts to simplify folding sim-
ulations have not been very successful in real-
world applications. Most of this research has
taken a top-down approach: starting with a full
atom model, then reducing its complexity until
it runs in “reasonable time”. However, this may
still be too slow to allow proper optimisation of
parameters. In this work I take a bottom-up ap-
proach: that is, to start with very simple abstract
models and improve on them step by step, using
a technique called genetic programming (GP).

GP is an evolutionary computation technique
for generating small programs or subroutines by
processes analogous to selection, reproduction
and mutation in populations of living organisms.
Here, as in many other implementations, the
“genome” of a program is stored and manipu-
lated as a tree, which directly corresponds to the
parse-tree of the program.

In brief, the GP system uses a tournament-
based selection system with ageing (death of indi-
viduals which have taken part in too many tour-
naments). Crossover points are chosen at ran-
dom but are biased towards pairs of subtrees with
similar sizes and content (to mimic homologous
recombination). Mutations are of the following
types: point mutation (terminal or internal), in-
sertion and deletion of subtrees at (also inter-
nal or terminal), swapping, copying and replac-
ing subtrees. Multiple crossovers and mutations
are possible and occur with a per-node probabil-
ity. All tree operations respect the strict typing

1

of nodes. Fitness functions are based on Q3 and
include soft-maximum penalty terms for tree size
and execution time.

Both the evolved programs and the system
which evolves them are written in Perl. Perl is a
good choice for bioinformatics research because
it allows rapid prototyping and has a powerful
regular expression engine and easy string han-
dling. Regular expressions are a special language
for pattern matching in strings. While they al-
ways give a yes or no answer they can be writ-
ten to allow flexibility in the number and type
of matches, which should be useful for matching
variable length secondary structures in proteins.
The main use of regular expressions in protein
sequence analysis to date has been the manual
discovery of family/function specific PROSITE
patterns[3], but few of these have flexible spac-
ing.

The evolved programs are built from a few
high-level Perl constructs according to a gram-
mar. The grammar basically allows any number
of scan() function calls and if-then statements.
The scan() function takes two arguments: a
regular expression (for matching the amino acid
sequence) and the type of secondary structure
to assign at all the positions where the regular
expression matches. The if-then flow control
statement is conditional upon matching of regu-
lar expressions against either the full amino acid
sequence or the sequence of partially predicted
secondary structure of the protein being pre-
dicted. It is the feedback from predicted struc-
ture which should allow dynamic behaviour to
emerge.

A population of 2000 predictors takes a few
days to evolve on a single CPU, and the predic-
tion accuracy is disappointingly low. Individual
predictors attain a Q3 of around 55% and the
majority vote of many of these predictors (from
different populations) achieves a Q3 of 58%. A
state-of-the art predictor would be expected to
get around 65% Q3 using single sequences as in-
put. In the next section we describe some results
in more detail and discuss the apparent limita-
tions of the GP-evolved regular expression ap-
proach.

2 Results & Discussion

2.1 Reducing the search space,
tweaking the grammar

Three versions of the GP system were run, each
with 30 independent populations of 2000 indi-
viduals for 60 hours. The standard system is de-

fined using “grammar A”, shown in Figure 1. If
the three-part regular expression passed to the
scan() function matches, only the sub-sequence
corresponding to the second part is assigned a
new secondary structure. The output secondary
structure string is initialised with an unpredicted
state, “U”, and is altered as a side-effect of the
scan() function.

Even a simple regular expression that matches
two neighbouring amino acids can have 20 ×
20 = 400 different combinations. Therefore
steps are taken to reduce the size of the search
space. “Grammar B” has a hierarchical form
of 〈AA〉 which includes expert knowledge about
the chemical properties of different amino acids
(such as hydrophobic, aromatic or polar nature).
“Grammar C” uses fixed amino acid groupings
gathered from a sampling of best-of-tournament
programs from a previous grammar B run.

As expected, the addition of prior knowledge
significantly speeds up the training process, pre-
sumably as a result of reducing the number of
“meaningless” regular expression combinations.
After the 60h run, grammar C reaches the highest
Q3 of 54.8% (mean of 30 populations), compared
to 52.3% and 53.9% for grammars A and B, re-
spectively, on an unseen test set. It is expected,
however, that the other grammars would reach
this level, given enough time and large enough
populations.

2.2 Evolved programs and their
behaviour

While the regular expression based predictors are
not competitive with the state-of-the-art neural
network based predictors, they do give a differ-
ent view of the protein sequence to structure re-
lationship. The programs have an explicit order-
ing of the scan() functions and this might sug-
gest something about the dynamics of secondary
structure formation.

Another 30 runs similar to Grammar A were
performed on training and test sets with equal
amounts of helix and strand. In these runs, the
output state was uniformly initialised with either
“H”, “E” or “C” specified by the evolved code.
At each sequence position in the test set data,
the “history” of secondary structural states was
recorded for each of the 30 best-of-tournament
programs (after 60h). The most common tran-
sitions are as follows: C 20.15%, C→H 15.38%,
C→E 11.18%, H 8.50%, C→H→E 7.44%, H→E
6.05%, E→C 4.41%, C→E→H 3.97%, H→C
3.94%, E→H 3.82%, E 3.41%.

There appears to be a preference in this
sample of 30 programs to initialise with coil

2

Grammar A

〈STAT 〉 → scan(〈SEQRE〉, 〈SS〉); | 〈STAT 〉〈STAT 〉 | if 〈COND〉 then 〈STAT 〉
〈SEQRE〉 → (〈R〉)(〈R〉)(〈R〉)

〈SS〉 → H|E|C [H=helix E=strand C=coil]

〈COND〉 → match(sequence, 〈R〉) | match(secondary structure, 〈S〉)
〈R〉 → 〈R〉〈R〉 | [〈AA〉] | [̂ 〈AA〉] | (〈R〉){〈N〉, 〈M〉}
〈AA〉 → 〈AA〉〈AA〉|A|C|D|E|F|G|H|I|K|L|M|N|P|Q|R|S|T|V|W|Y
〈S〉 → [similar to 〈R〉 but with a 3-letter alphabet: H,E,C]

Grammar B (modifications)

〈AA〉 → 〈AA〉〈AA〉|〈HPHOB〉|〈AROM〉|〈POLAR〉|...|A|C|D|E|F|G|H|I ...
〈HPHOB〉 → 〈HPHOB〉〈HPHOB〉|I|L|V|F|M

Grammar C (modifications)

〈AA〉 → GP|P|G|DGP|DGNPS|IV|FIV|CFIVWY|FILVY|CFILMVWY|ADEGHKNPQRS

Figure 1: Simplified grammars used for GP secondary structure prediction

(C), followed by helix (H). The most inter-
esting observation is that (C→)H→E tran-
sitions are more common than (C→)E→H
transitions, suggesting that a more success-
ful strategy is to initially over-predict he-
lix and later revert some helix to strand.
The evolved regular expressions tell us even
more; many helix patterns actually specify “not
coil”, such as (.{1,2})(([^PG]){8,})([^P]).
Positive helix patterns also evolve, such
as ([^F])((([^G]){1,2}[AELQ]){3,})([^Q]),
but these are quite rare. Although the se-
quence signals for strand are ultimately more
long-range in nature, at a local level helix pat-
terns are slightly more complex, involving a re-
peated motif of 3 or 4 residues compared to
the simple alternating of strands (for example,
()(([V][^GP]){1,8})()). Clearly GP would
find it easier to learn the shorter patterns.

To state that there is a direct correspondence
between the behaviour of real folding proteins
and these simple evolved pattern matching pre-
dictors would be going to far. However, both sys-
tems are self-organised and initially rely on just
local information, so further investigation could
be worthwhile.

The real disappointment was that no programs
evolved which used feedback from already pre-
dicted secondary structure, even though this was
defined in the grammar. Perhaps the fitness
landscape of programs with such complex in-
ternal dependencies is too rough, or could the
predicted secondary structure information be of
too low quality? Also note that the effective
amount of training data is drastically reduced at
the “per sequence” level compared to the “per
short stretch of residues” level. The same reason-
ing may explain why few interesting long-range
regular expressions evolved.

2.3 Future and other work

It seems necessary to force the GP programs to
evolve interesting dynamic behaviour and to use
long range information, and this is the current
direction of my research. Cellular automata-like
systems show interesting dynamics and the pos-
sibility to compute global information using local
rules. I am also evolving programs which success-
fully improve neural network predictions.

References

[1] R. Bonneau, J. Tsai, I. Ruczinski, D. Chivian,
C. Rohl, C. E. Strauss, and D. Baker, Rosetta
in CASP4: Progress in ab initio protein struc-
ture prediction, Proteins: Struct., Funct., Genet.
45(S1) (2001), 119–126.

[2] C. Bystroff, V. Thorsson, and D. Baker, HMM-
STR: a hidden Markov model for local sequence-
structure correlations in proteins, J. Mol. Biol.
301(1) (2000), 173–190.

[3] L. Falquet, M. Pagni, P. Bucher, N. Hulo,
C. J. Sigrist, K. Hofmann, and A. Bairoch, The
PROSITE database, its status in 2002, Nuc. Ac.
Res. 30(1) (2002), 235–238.

[4] D. T. Jones, Protein secondary structure predic-
tion based on position- specific scoring matrices,
J. Mol. Biol. 292 (1999), 195–202.

[5] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi,
Improving the prediction of protein secondary
structure in three and eight classes using re-
current neural networks and profiles, Proteins:
Struct., Funct., Genet. 47(2) (2002), 228–235.

[6] B. Rost, Review: protein secondary structure pre-
diction continues to rise, J. Struct. Biol. 134(2-
3) (2001), 204–218.

3

